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Chapter 3

General Probability and Random Variables

3.3 Probability
3.3.1 Sample Space and Events

e An experiment is any action or process that generates observations.

e The sample space of an experiment, denoted by €2, is the set of
all of the possible outcomes of an experiment.
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CHAPTER 3. GENERAL PROBABILITY AND RANDOM VARIABLES
e Although the outcome of an experiment cannot be known before it

has taken place, it is possible to deline the sample space for a given
experiment, The sample space may be either finite or infinite,

e [or example, the number of unoceupied seats in a train corresponds
to a finite sample space. The number of passengers arriving at
an airport also produces a finite sample space, assuming a one to
one correspondence between arriving passengers and the natural
numbers.

e The sample space for the lifetime of light bulbs, however, is inflinite,
since lifetime may be any positive value.

e An event is any subset of the sample space, which is often denoted
with the letter E.
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e Events are said to be simple when they contain only one outcome;
otherwise, events are considered to be compound. Consider an
experiment where a single die is thrown.

e Since the die might show any one of six numbers, the sample space
is written Q = {1,2,3,4,5,6}; and any subset of €2, such as £} =
{even numbers}, Ey = {2}, B3 = {1,2,4}, E4 =Q, or E5 =0, is

considered an event.

e Specifically, F» is considered a simple event while all of the remaining
events are considered to be compound events.

e Event Fj5 is known as the empty set or the null set, the event
that does not contain any outcomes.

e [n many problems, the events of interest will be formed through a
combination of two or more events by taking unions, intersections,
and complements.
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3.3.2 Set Theory

e The following definitions review some basic notions from set theory
and some basic rules of probability that are not unlike the rules of
algebra.

e For any two events F and F ol a sample space Q, define the new

event £/ U I (read E union ) to consist of all outcomes that are
either in & or in £’ or in both E and F'.

e [1n other words, the event £ U £ will occur if either E or £ occurs.
e [n a similar fashion, for any two events £ and F of a sample space

2, define the new event £ N F (read E intersection F') to consist
of all outcomes that are both in £ and in F.

e ['inally, the complement of an event E (written E°) consists of all
outcomes in {2 that are not contained in £.

/|
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e Given events F, I G, Ey, Eoy, ..., the commutative, associative,

distributive, and DeMorgan’s laws work as follows with the union
and intersection operators:

1. Commutative laws
e for the union FUF=FUFE
e for the intersection ENnkF=Ink
2. Associative laws
e for the union (FUF)UG=FEU(FUQG)
e for the intersection (ENF)NG=EN(FNG)
3. Distributive laws
o (ENFIUG=(FUG)N(FUG)

e (FEUFNG=(ENGYU(FNG)
1. Demorgan’s laws

o0 “ 0 o0 ¢ 0
o| Usi) =& o | NE) =UES
i=1 i=1 i=1 i=1
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3.3.3 Interpreting Probability

3.3.3.1 Relative Frequency Approach to Probability
Suppose an experiment can be performed n times under the same
conditions with sample space, 2. Let n(E) denote the number of
times (in n experiments) that the event E occurs. The relative
frequency approach to probability defines the probability of the event
E, written B(E}, as

P(E) = lim &)

n—od T

Although the preceding definition of probability is intuitively appealing,

it has a serious drawback. There is nothing in the definition to
n(F)

guarantee —— converges to a single value.

§
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3.3.3.2 Axiomatic Approach to Probability

The Three Axioms of Probability
Consider an experiment with sample space, 2. For each event £
of the sample space €0, assume that a number P(F) is defined that
satisfies the following three axioms:

LO<RE) <1

3. For any sequence of mutually exclusive events E1, Fo, ... (that
is E; N Ej=0) forall i # 7,

~ ~
el JE] =D rE)
i=1 =1
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The following results are all easily derived using some combination of
the three axioms of probability.

LP(ES =1—P(E)
Proof: Note that E and E¢ are always mutually exclusive. Since
FEUE® = 2, by axiom 2 on the preceding page and axiom 3 on the pre
1=pQ)=PrEUE") =P(F)+P(E).

2.P(EUF)=PE)+PF)—PENF)
3.P(0)=0

4.1f E C F, then p(E) < P(F)
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Example 3.9 > Law of Complement: Birthday Problem
<] Suppose that a room contains m students. What is the probability
that at least two of them have the same birthday? This is a famous
problem with a counterintuitive answer. Assume that every day of
the year is equally likely to be a birthday, and disregard leap vears.
That is, assume there are always n = 365 days to a year.

Solution: Let the event £ denote two or more students with the
same birthday. In this problem, it is easier to find E© as there are
a number of ways that F can take place. There are a total of 365™
possible outcomes in the sample space. E° can occur in 365 x 364 x
<+ X (365 —m + 1) ways. Consequently,

W 365 x 364 x -+ x (365 —m + 1)
MEC.} - 365M
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and 365 x 364 (365 1
365 x 364 x -+ x (365 —m —+
P(E)=1-— ~ ) .
065771
The following S code can be used to create or modify a table such
as the one in Table 3.1 on the facing page, which gives P(F) for m =

10,15, ..., 50

» for (m in seq(10,50,5))
print(c(m, 1 - prod(365: (365-m+1))/365"m))

Another approach that can be used to solve the problem is to enter

» m <- seq(10,50,5)
» P.E <- function (m) {c(m,l-prod(365: (365-m+1))/365"m) }
» t(sapply(m,P.E))

1
MARQUETTH
UNIVERSITY
BIRTHDAY PARADOX e
* What’s the chances that two people in our class have
the same birthday?
‘Z.z _________ — Probability of a pair
: A — Probability of no matching pair
005 10 20 : ~233'0 20 50 60 70 80 90
Number of people
1)
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3.3.4 Conditional Probability If £ and F' are any two events
in a sample space 2 and P(F) # 0, the conditional probability
of I given £ is defined as
P(E N EF)
P(F|E) = W
It is left as an exercise for the reader to verify that P(I7|£) satisfies
the three axioms ol probability.

(3.1)

Example 3.11 Suppose two fair dice are tossed where each of the
36 possible outcomes is equally likely to occur. Knowing that the first
die shows a 4, what is the probability that the sum of the two dice
equals 87

12
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Solution: The sample space for this experiment is given as €} =
{(i,7), 1 = 1,2,...,6, j = 1,2,...,6} where each pair (i,7) has
a probability 1/36 of occurring. Define “the sum of the dice equals
8" to be event I and “a 4 on the first toss” to be event £. Since
E N I corresponds to the outcome (4,4) with probability P(E N
F) = 1/36 and there are six outcomes with a 4 on the first toss,
(4,1),(4,2),...,(4,6), the probability of event F, P(E) = 6/36 =
1/6 and the answer is calculated as

e EENF) 1/3% 1 .
FEE) =B ~ 176 6
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Example 3.12 Suppose a box contains 50 defective light bulbs,
100 partially defective light bulbs (last only 3 hours), and 250 good
light bulbs. If one of the bulbs from the box is used and it does not
immediately go out, what is the probability the light bulb is actually
a good light bulb?

Solution: The conditional probability the light bulb is good given
that the light bulb is not defective is desired. Using (3.1), write:

, _ P(Good) 250/400 5
‘ood|Not Defective) = = A
P(Good|Not Defective) P(Not Defective) — 350/400 7

14
MARQUETTH
et s,
3.3.5 The Law of Total Probability and Bayes’ Rule
Law Of Total Probability — Let I, [, ..., I, be such that
UL Fi = Qand F; N I = () for all @ # 7, with B(#}) > 0 for all 4.
111911 fut any event [,
n
P(E) = Z]PEOF = " P(E|F)e( (3.2)
i=1 =1
At times, it is much easier to calculate the conditional probabilities
P(E|F;) for an appropriately selected I than it is to compute P(F)
directly. When this happens, Bayes’ Rule is used, which is derived
using (3.1), to find the answer.
Bayes’ Rule — Let [, [, ..., F}, be such that [J!'_| F; = © and
FiNF; = () for all i # 7, with B(F}) > 0 for all i. Then,
P(ENF; P(E|F;)P(F;
o P(E) > i1 B(E|F;)B(F;)
15
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Example 3.13 [> Conditional Probability: Car Batteries
<1 A car manufacturer purchases car batteries from two different

suppliers. Supplier A provides 55% of the batteries and supplier B

provides the rest. If 5% of all batteries from supplier A are defective

and 4% of the batteries from supplier B are defective, determine the

probability that a randomly selected battery is not defective.

P(C'N B) = 0.018
—

S |

Ve
P(C'N A) =0.0275

P(A) = 0.55 P(B) = 0.45

Figure 3.1: Sample space for Example 3.13

19
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Solution: Let C' correspond to the event “the battery does not
work properly,” A to the event “the battery was supplied by A"
and B to the event “the battery was supplied by B.” Since a working
battery might come from either supplier A or B, A and B are disjoint
events.

Consequently, P(C) =P(C' N A) +P(C N B). Given that

P(A) = 0.55, B(C|A) = 0.05, P(C N A) = P(C|A)P(A),
B(B) = 0.45, B(C|B) = 0.04, and P(C' N B) = P(C|B)e(B),

write P(C') = (0.05)(0.55)-+(0.04)(0.45) = 0.0455. Then, the probability
that the battery works properly is 1 — P(C) = 0.9545. .

17}
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Example 3.14 Suppose a student answers all of the questions on
a multiple-choice test. Let p be the probability the student actually
knows the answer and 1 — p be the probability the student is guessing
for a given question. Assume students that guess have a 1/a probability
ol getting the correct answer, where a represents the number of
possible responses to the question. What is the conditional probability
a student knew the answer to a question given that he answered

correctly?
2
¢ .DSY

looking at a test question

&
and having absolutely noidea \3

so | havent
answered D
inawhile... <

Wik 5:’;44.\;\|-.-1:@—|.:_‘:3:

"We prefer to call this
test ‘multiple choice,’ not
‘'multiple guess."

19
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Solution: Let the event £, “question answered correctly,”
17, represent the events “student knew the correct answer,”
and I “student guessed” respectively. Using (3.3) write
P(HY N E (£
7 002) S AK S L} E—
(£ P(E|FYe(F)) + B(E|F)Pp(F)
P(EY)
P +P(FyNE)
P
Cp+(l=p)/a
1 |
because P(E|Fy) = — and P(Ih) =1 —p
a
. P(Fy N E , . Ll—=p
p(E|Ry) = P20 B) o by By = LT
2 P(1%) a
As a special case, if @ = 4 and p = 1/2, then the probability a student
actually knew the answer given their response was correct is 4/5. =
19
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L
Example 3.15 > Bayes’ Rule: Choose a Door <| The
television show Let’s Make a Deal hosted by Monty Hall gave contestants
the chance to choose, among three doors, the one that concealed the
grand prize. Behind the other two doors were much less valuable
prizes.  After the contestant chose one ol the doors, say Door 1,
Monty opened one of the other two doors, say Door 3, containing

a much less valuable prize. The contestant was then asked whether

he or she wished to stay with the original choice (Door 1) or switch to
the other closed door (Door 2). What should the contestant do? Is it
better to stay with the original choice or to switch to the other closed
door? Or does it really matter? The answer, of course, depends on
whether contestants improve their chances of winning by switching
doors. In particular, what is the probability of winning by switching
doors when given the opportunity; and what is the probability of

2()
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winning by staying with the initial door selection? First, simulate the
problem with S to provide approximate probabilities for the various
strategies. Following the simulation, show how Bayes’ Rule can be
used to solve the problem exactly.

Solution: Tosimulate the problem, generate a random vector named
actual of size 10,000 containing the numbers 1, 2, and 3. In the
vector actual, the numbers 1, 2, and 3 represent the door behind
which the grand prize is contained. Then, generate another vector
named guess of size 10,000 containing the numbers 1, 2, and 3 to
represent the contestant’s initial guess. If the ™ values of the vectors
actual and guess agree, the contestant wins the grand prize by
staying with his initial guess. On the other hand, if the i values
of the vectors actual and guess disagree, the contestant wins the
grand prize by switching. Consider the following S code and the

2]

9/30/2019
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results which suggest the contestant is twice as likely to win the grand
prize by switching doors.

» actual <- sample(1:3, 10000, replace = T)
» aguess <- sample(1:3, 10000, replace = T)
» equals <- (actual == aguess)
» PNoSwitch <- sum(equals) /10000
» not.eq <- (actual != aguess)
» PSwitch <- sum(not.eq) /10000
» Probs <- c(PNoSwitch, PSwitch)
» names (Probs) <- c("P(Win no Switch)", "P(Win
Switch)"™)
» Probs
P(Win no Switch) P(Win Switch)
0.3317 0.6683
2
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Next use (3.3) after defining events D; and O; to find P(D1]O3)
and P(Ds|03). Start by assuming the contestant initially gnesses
door 1 and that Monty opens door 3.

Let the event D); = door i
conceals the prize and O; = Monty opens door j after the contestant
selects door 1.

When a contestant initially selects a door, B(D}) =
P(D9) = P(Ds) = 1/3. '

Once Monty shows the grand prize is not
behind door 3, the probability of winning the grand prize is now one
of P(I)ll()g} or P(I)2|()3). '

Note that P(D]|O3) corresponds to the
strategy of sticking with the initial guess and P(D3|Os) corresponds
to the strategy of switching doors. Based on how the show is designed
the following are known:

2

9/30/2019
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e (03| D) = 1/2 since Monty can open one of either door 3 or door

2.
o (3| Dy) = 1since the only door Monty can open without revealing

the grand prize is door 3.
o (O3] D3} = 0 since Monty will not open door 3 if it contains the

grand prize.
P(O3|Dy)P(Dy)

DO — |
P(D1[03) P(O3] D1 )IP(D1) + B(Os] Do) D2) +
1/2x1/3 1
C1/2x1/34+1x1/3+0x1/3 3

_ P(O3| Do)P(Dy)
P(D2103) = 505 DrR(DL) + F(051D2)P(D2) = P03 D3)P(D3)
1x1/3 2

T 1/2x1/3+1x1/3+0x1/3 3

Therefore, it is always to the contestant’s benefit to switch doors. =
24
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3.3.6 Independent Events
e T'wo events £ and I are independent if and only if B(E|F') = p(E)

or P(F|E) = P(F).
e An equivalent way to define independence between two events is to
use (3.1) and to show that P(E N F) = P(E)P(F).

e [ndependence between two events is really a special case of independence
among n events. Define events Eq,...,Ep to be independent
if for every k where & = 2,...,n and every subset of indices
11,02y oy Ly P(_Eil M Eig ne--nN E%) = P(E-il)P(Eiz) s P(E-ik.)-

e [t is important to point out that events in any subset of the original

independent events of size r, where r < k, are also independent,
e Further, ifevents Ey, ..., B, areindependent, then so are EY, ..., E}.

25
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3.4 Random Variables
In general, a random variable is a function from a sample space 2
into the real numbers. Random variables will always be denoted with
uppercase letters, for example X or Y, and the realized values of the
random variable will be denoted with lowercase letters, for example
z or y. Here are some examples of random variables:

1. Toss two dice. X = sum of the numbers on the dice.

2. Surgeon performs twenty heart transplants. X = number of successful
transplants.

3. Individual 40 kilometer cycling time trial. X = time to complete
the course.

e Random variables may be either discrete or continuous.

e A random variable is said to be discrete if its set of possible outcomes
is finite or at most countable.

o If the random variable can take on a continuum of values, it is
continuous.

e I[ Y is a random variable that is distributed approximately DIST
with parameter(s) 8, write Y ~ DIST(8).

20
MARQUETTH
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3.4.1 Discrete Random Variables
e A discrete random variable assumes each of its values with a certain
probability. When two dice are tossed, the probability the sum of
two dice is seven, written P(X = 7), equals 1/6.
e The function that assigns probability to the values of the random
variable is called the probability density function, (pdf).
e Many authors also refer to the pdf as the probability mass function
(pmf} when working with discrete random variables. Denote the pdf
as p(x) = P(X = z) for each z.
e All pdfs must satisfy the following two conditions:
1.p(xz) > 0 for all z.
2.3 plx) =1
YV
2]

9/30/2019
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The cumulative distribution function, (edf), is defined as

Flz)=pPX <z)= Z plk).
k<x
Discrete cdfs have the following properties:

1. 0< F(z) <1

2. Ifa < b, then F(a) < F(b) for any real numbers a and b. In other
words, F'(x) is a nondecreasing function of z.

3. lim Flz)=1

T—00

4, lim F(z)=0

T——00

5. F(x)is a step function, and the height of the step at z is equal to
flz)=PX =x).

29
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Example 3.17 Toss a [air coin three times and let the random
variable X represent the number of heads in the three tosses. Produce
graphical representations of both the pdf and cdf for the random
variable X.

Solution: The sample space for the experiment is
QO={HHH HHT ,HTH,THH, TTH,THT, HTT,TTT}

The random variable X can take on the values 0, 1, 2, and 3 with
ey e K 3 . v . r <
probabilities % gi g, and % respectively. Define the cdf for X, ['(z) =

9/30/2019
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P(X < x) as follows:
;

0 if'er< 0]
1/8 if0<z<1

Flz)=¢4/8 fl<z<?2
7/8 if2<z<3
1 ifz >3

\
To produce a graph similar to Figure 3.3 on page 52 with placement
of specific values along the axes for both the pdf and cdf using the
function axis () follows.

» x <= 0:3

» fx <- ¢(1/8,3/8,3/8,1/8)

» Fx <- c(1/8,4/8,7/8,1) # or Fx <- cumsum(£fx)

» par (mfrow=c(1,2),pty="s")

3
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» plot(x, fx, type="h", xlab="x", ylab="P (X=x)",
x1lim=c(0,3), ylim=c (0, .4), xaxt="n", yaxt="n")
» axis(l,at=c(0,1,2,3),labels=c(0,1,2,3),las=1)
» axis(2,at=c(1/8,3/8),labels=c("1/8","3/8"),las=1)
» title ("PDF")
» plot(x, Fx,type="n", xlab="x", ylab="F(x)",
xlim=c(-1,5), ylim=c(0,1),yaxt="n")
» axis(2,at=c(1/8,4/8,7/8,1),labels=c("1/8","4/8",
"7/8m", "1y
» segments(-1,0,0,0)
» segments(0:4,c(Fx,1),1:5,c(Fx,1))
» lines (x,Fx,type="p",pch=16)
» segments(-1,1,5,1,1ty=2)
» title ("CDF")
3]

9/30/2019
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PDF for X CDF for X
2 —
38
718 ] —
Il 1
M o 48 ] —
By =5 H
18 [T
18 —
T T T T T T T T T T
o 1 H 3 1 0 1 2 3 4 5
T z

Figure 3.3: The pdf and Cdf for the random variable X, the number of heads in three tosses of a fair coin

37
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3.4.2 Mode, Median, and Percentiles

e The mode of a probability distribution is the x value most likely
to occur. If more than one such x value exists, the distribution is
multimodal.

e The median of a distribution is the value m such that p(X <
m)>1/2 and P(X >m) > 1/2.

e The jlh percentile of a distribution is the value z; such that
P(X < zj) > T‘(% and P(X > zj) > 1— T'()% The m value that
satisfies the definition for the median is not unique.

o [f Example 3.17 on page 49 is considered, the modes are 1 and
2: and any value m between 1 and 2, not inclusive, satisfies the
definition for the median.

e The 25h percentile of the distribution of X is 1 because P(X <

4 25, ; 7 95
33

9/30/2019
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Given a discrete random variable X with pdf p(x), the expected
value of the random variable X, written E[X], is

E[X] =) z-p(z) (3.4)

Also denote E[X | as uy, recognizing that F[X] is the mean of
the random variable X. In this definition, it is assumed the sum
exists; otherwise, the expectation is undefined. It can be helpful to
think of E[X] as the fulcrum on a balance beam as illustrated in
Figure 3.4 on the following page.

A

Figure 3.4: Fulerum illustration of E[X]

34
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Example 3.18 A particular game is played where the contestant
spins a wheel which can lands on the numbers 1, 5, or 30 with
probabilities of 0.50, 0.45, and 0.05 respectively. The contestant pays
$5 to play the game and is awarded the amount of money indicated
by the number where the spinner lands. Is this a fair game?

Solution: By fair, it is meant that the contestant should have an
expected return equal to the price she pays to play the game. To
answer the question, the expected (average) winnings from playing
the game need to be computed. Let the random variable X represent
the player’s winnings.

E[X] =) z-p(x)=(1x 0.50)+ (5 x 0.45) + (30 x 0.05) = 4.25
—

Therefore, this game is not fair, as the house makes an average of 75
cents each time the game is played.

9/30/2019
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Another interpretation of the expected value of the random variable
X is to view it as a weighted mean. Code to compute the expected
value using (3.4) and using the function weighted.mean() are given
next.

» x <- ¢(1,5,30)
px <- c(0.5,0.45,0.05)
EX <- sum(x*px)

c (EX, WM)

>
>
» WM <- weighted.mean (x, px)
>
[1] 4.25 4.25

Often, a random variable itself is not of interest but rather some
function of it is important, say g(X ), of the random variable X. The

39
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expected value of a function g(X') of the random variable X with pdf
plx)is
E[g(X)] = glz) - p(x). (3.5)
&
Example 3.19 Consider Example 3.18 for which the random variable
Y is defined to be the player’s net return. That is ¥ = X — 5 since
the player spends $5 to play the game. What is the expected value
of Y7
Solution: The expected value of Y is
E[Y] =) (2=5)-p(x) = (—4x0.50)+(0x0.45)+(25x0.05) = —0.75
-
To compute the answer with S use
> x <- c(1,5,30)
> px <- c(0.5,0.45,0.05)
» EgX <- sum((x-5) *px)
» WgM <- weighted.mean ((x-5),px)
» c(EgX,WgM)
[1] -0.75 -0.75 .
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Rules of Expected Value The function g(.X) is often a linear
function @ + bX, where @ and b are constants. When this occurs,
FElg(X)] is easily computed from E[X]. In Example 3.19 @ and b
were -5 and 1 respectively for the linear function g(X'). The following
rules for expected value, when working with a random variable X and
constants a and b, are true.

1. E[bX] = bE[X]

2. Ela+bX] =a+bE[X]

Unfortunately, if g(X) is not a linear function of X, such as g(X) =
X2 the E[X?] # (E[X])*. In general, E[g(X)] # g(E[X)).

3
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3.4.4 Moments

Another way to define the expected value of a random variable is
with moments. However, knowing the mean (expected value) of a
distribution does not tell the whole story. Several distributions may
have the same mean. In this case, additional information, such as the
spread of the distribution and the symmetry of the distribution. is
helpful in distinguishing among various distributions.

The 7% moment about the origin of a random variable X |
denoted ., is defined as E[X"]. Note that o] = E [Xl] is called
the mean of the distribution of X, also denoted py or simply . The
special moments defined next are important in the field of statistics as
they help describe a random variable’s distributional shape.

The *® moment about the mean of a random variable X , denoted

Lir, 18 the expected value of (X — u)". However, all moments do not exist.

9/30/2019
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For the r'' moment about the origin of a discrete random variable to

be well defined, Z.?il |.T.f|IP’(X — x;) must be less than oco.

The ! moment about the origin of a random variable X

denoted o, is defined as E[X".

Moments about 0
E[X‘q = Oy

The 7" moment about the mean of a random variable X . denoted
fir, s the expected value of (X — p)”.

Moments about u
E[(X =)=

UNIVERSITY
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3.3.4.1 Variance The second moment about the mean is called
the variance of the distribution of X, or simply the variance of X.

var[X] = 0% = E {(,\' . ,f.)'f] ~E [,\'2] 2 (37

The positive square root of the variance is called the standard
deviation, and is denoted o x. The units of measurement for standard
deviation are always the same as the those for the random variable
X. One way to avoid this unit dependency is to use the coefficient
of variation, a unitless measure of variability.

DEerFINITION 3.1:  Coefficient of variation — When E[X] #
0,

S ¢ .
% E) (3.8)

4]
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65

3.4.4.2 Rules of Variance If X is a random variable with mean
i and a and b are constants, then

1. var[b] = 0
2. varlaX] = a®var[X]

3. varlaX + b) = a*var[X]

Note that once var[aX + b = a®var[X] is proved, var[b] = 0 and

var[aX] = a’var[X] have been implicitly shown.

Proof:

varfaX +b] = E[(aX +b— E[aX + b))% = E[(aX +b—au — b)Y
= E[(aX —ap)® = ’E [(X - /.1)2] = a®var[X].

4
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3.4.5 Continuous Random Variables Recall that discrete
random variables could only assume a countable number of outcomes.
When a random variable has a set of possible values that is an entire
interval of numbers, X is a continuous random variable. For
example, if 12 ounce can of beer is randomly selected and its actual
fluid contents X is measured, then X is a continuous random variable
because any value for X between 0 and the capacity of the beer can
is possible.
The function f(x) is a pdf for the continuous random
variable X | defined over the set of real numbers R if,
L flz) >0, —o0 <2 < o0.
00
2. flz)dr = 1.
Pacxsy Pox <s Pix <o
—0
S.P[angb)—/_f(_m)(lw. 1 , “
([ £ fla)dz [ fix)dr Jog Sz} 4\‘
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DEeErFINITION 3.2: Cumulative Distribution Function — The cdf,
F(z), of a continuous random variable X with pdf f(z) is

Flzy=pX <z)= ] fleydt, —oo << o0 (3.10)

According to Definition 3.2, the cdf is derived from an existing pdf.
Further, according to the fundamental theorem of calculus, the other
direction is also true since F'(z) = f(z) for all values of @ for which
the derivative F/(z) exists.

Continuous edfs have the following properties:
L0 Flz) < 1.
2.1f a < b, then F(a) < F(b) for any real numbers a and
b. In other words, I'(x) is a nondecreasing function of x.
3. lim F(z)=1
IT—0C0
4. lim F(z)=0

T——00
44
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Example 3.20 > Calculations of pdf and cdf <] Suppose X
is a continuous random variable with pdf f(2) where
k(1—2%) if —1<z<1,
flz) = ,
0 otherwise.
(a) Find the constant k so that f(z) is a pdf of the random variable
IXT.
(b) Find the cdf for X.
(c) Compute P(—0.5 < X < 1).
(d) Graph the pdf and cdf of X with S.
49
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Solution: The answers are:
(a) Using property 2 from Box (3.9) for the pdf of a continuous random
variable write

o0 1
] = / f(x)dr — /k(l — ) da
—!r)c ;l

(b) if oz < —1
&£ 3 3
: 2 A L
Flz) = fj(l—l](lt— 1—0—2 if —l<az<l1
-1
itz > 1
4
MARQUETTH
UN]VE::S]TY
(¢) Using property 3 from Box (3.9) for the pdf of a continuous random
variable, write
P(—0.5 < X <1) = F(1)— F(-0.5)
~1% 3.1 1 (=) 33,
S\ 4 4 2 4 12
-1 3 N 1 1 N -3 . 1
4 42 32 8 2
5 27 -
(d} Figure 3.6 depicts the pdf and cdf of X.
2 o 1 2 2 o 2 4_
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par (mfrow=c(1l,2), pty="s")

x<-seq(-1,1,0.01)

y<=3/4* (1-x"2)

plot(x, vy, xlim=c(-2,2), ylim=c(0,1), type="1",
xlab="x", ylab="f(x)")

segments (-2,0,-1,0)

YV V V V

segments(1,0,2,0)

title ("PDF for X")

y<- -x"3/4 +3*x/4+1/2

plot(x, y, xlim=c(-2,2), ylim=c(0,1), type="1",
xlab="x", ylab="F(x)")

segments (-2,0,-1,0)

YV V V VY V

Y

segments(1,1,2,1)
title ("CDF for X")

YV VY

49
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3.4.5.1 Numerical Integration with S
The S function integrate () approximates the integral of functions
of one variable over a finite or infinite interval and estimates the
absolute error in the approximation.
1

3 . 3r
P(—05< X < 1) = /1(1—12) de =2 -2

—0.5
The following code computes P(—0.5 < X < 1) using the function
integrate() for R and S-PLUS respectively.

» fx <- function(x) {3/4-3/4*x"2}
» integrate (fx, lower=-0.5, upper=1) # R
0.84375 with absolute error < 9.4e-15

» fx <- function(x){3/4-3/4*x"2}
» integrate (fx, lower=-0.5, upper=1)S$integral # S-PLUS
[1] 0.84375
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3.4.5.2 Mode, Median, and Percentiles The mode of a
continuous pmbahllli\ distribution, just like the mode of a discrete

probability distribution, is the x value most likely to occur. If more
than one such @ value exists, the distribution is multimodal.

The median of a (Ontmuous d Mlll)m ion is the value m such that

/f (11—/f (Zr—%

The 3 th percentile of a continuous distribution is the value 2 ; such

that
i
il —
/f(&)(l.il? 100"

—00

MARQUETTH

EXAMPLE 3.21 D

Be The Difference.

Example 3.21 Given a random variable X with pdf

2% ifz >0
flz) = .
0 if 2 <0

(a) Find the median of the distribution.

(b) Find the 25t percentile of the distribution.

Solution: The answers are:
m
. . — = B
(a) The median is the value m such that [2e™*"dx = 0.5 which
) ) 0
implies

51}
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m

(a) The median is the value m such that [ 2e™2*dx = 0.5 which
0
implies .
—e Ty =05
T 1=105
—2m _ 0.5—1
In(e=2™) = In(0.5)
In(0.5
m =05 g 3466

=
)
o

(b) The 25" percentile is the value 295 such that f 2e 2 dx = 0.25
0

which implies
— 9 -
—e7HB 41 = 0.25
) -
—e T =0.25-1

In(e™2*%) = In(0.75)

—2r I ~
“F =025

In(0.75
25 = [ - ) _ 0.1438
—9 57
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Example 3.22 Given a random variable X with pdf
2co8(2z) f0<z<7/4
[(z) = .
0 otherwise
(a) Find the mode of the distribution.
(b) Find the median of the distribution.
(¢} Draw the pdf and add vertical lines to indicate the values found in
part b.
Solution: The answers are:
(a) The function 2cos2z does not have a maximum in the open
interval (0, 7 /4) since the derivative f/(x) = —4sin 2z does not equal
0 in the open interval (0,7 /4).
53

9/30/2019

27



MARQUETTH
UNIVERSITY
_ . . Be The Difference.
(b) The median is the value m such that
m
/'2 cos 2z dx = 0.5
0
4
sin Qﬁrlgl =sin2m = 0.5
2m = arcsin(0.5)
T
m=—
12
(c) The R commands used to create Figure 3.7 follow.
» curve (2*cos (2*x),0,pi/4) o
» abline (v=pi/12,1lty=2, lwd=2) TR
. .
.

2" cos(
5

(13 0z 04 08 08

Figure 3.7: Graph of 2cas(2¢) from 0 ta § with R 54
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3.4.5.3 Expectation of Continuous Random Variables
For continuous random variables, the definitions associated with the
expectation of a random variable X or a function, say g(X), of X are
identical to those for discrete random variables except the summations
are replaced with integrals and the probability densily [unctions are
represented with f(2) instead of p(z). The expected value of a
continuous random variable X is

E[X] = pnx x- flz)de. (3.12)

[l
—

When the integral in (3.12) does not exist, neither does the expectation
of the random variable X. The expected value of a function of X,

9/30/2019
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say g(X), is
oC
E[g(X)] = /g(g:}.f(a;)c.fx. (3.13)
S

Using the definitions for moments about 0 and g given in (3.6) which
relied strictly on expectation in conjunction with (3.13), the variance
ol a continuous random variable X is written as

o0
var[X] = 0% = E[(X — p)?] = / (@ — pyflz)de.  (3.14)
00
5
MARQUETTH
EXAMPLE 3.23 bt
Example 3.23 Given the function
flay=Fk —-l<z<]1
of the random variable X
(a) Find the value of k& to make f(z) a pdf. Use this & for parts (b)
through (c).
(b) Find the mean of the distribution using (3.12).
(¢} Find the variance of the distribution using (3.14).
Solution: The answers are: .
o0
(a) Since [ f(z)dz must equal 1 for f(z) to be a pdf, set [ kdx
—00 —1
equal to one and solve for k.
1
fk;drr, =1= k:.'z:|1_1 =1
1
! 2%k =1=k=-
2
.
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(b) The mean of the distribution using (3.12) is
1
. 1
EX|=ux= / 5@ dx
-1
22!
=—| =0
Ll
(c) The variance of the distribution using (3.14) is
o
var[X| = ok = E[(X — p)*] = / (z — p)*f(x)dx
—00
1
ol
= /(.1. —0) 5(5.1.
-1
B 23! 1
6], 3 .
59
MARQUETTH
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3.4.6 Markov’s Theorem and Chebyshev’s Inequality
Theorem 3.1 Markov’s Theorem If X is a random variable and
g(X) is a function of X such that (X} > 0, then for any positive K
Elg(X)
P(g(X) > K) < % (3.15)
Proof:
Step 1. Let I(g(X)) be a function such that
. 1 ifg(X) > K,
I(g(X)) = i
0 otherwise.
Step 2. Since g(X) > 0 and I(g(X)) < 1, when the first condition
of [(Q(X}) is divided by K
.(Y
I(gx) < 42
59
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Step 3. Taking the expected value,

K

Step 4. Cloal'l\' tlle
]y JX

> Hg(@)

= [1-p(1(o(x )] + [0-#(1(g(x)) = 0)]
=[1-p(g(X) > A)] [0-P(g9(X) < K)]
=P(g(X) > K).

Step 5. Rewriting,

o E[g(X)]
(9(X) > K) < 292
P(g(X) 2 K) < —3

the inequality from (3.15) to be proven.

MARQUETTH
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If g(X) = (X — p)? and K — k%02 in (3.15) it follows that

. 5 ElX 7,{1} o? 1 )
M”((X T !ﬁzgz) < [ P ] — T (3.16)

Working inside the probability on the left side of the inequality in
(3.16), note that

((X - #-_)2 2 "3202) = (X e \/@) or (X —n< —\/@)
= (|X —pul > VE2a2).
(1x —nl = Viee?)

Using this, rewrite (3.16) to obtain
1
P(|X —p| > ko) < R (3.17)

which is known as Chebyshev’s Inequality.

DEerFiNITION 3.3: Chebyshev’s Inequality — Can be stated
as any of
o’ 1
(a) P(| X —p| = k) < el (rv)IP(|X—,u\2k:0)§kz
2 1
- a D T —
(D) B(X —p < k) > 115 (DX —pl <ko) 21— 15

61}
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3.4.7 Weak Law of Large Numbers

An important application of Chebyshev’s Inequality is proving the
Weak Law of Large Numbers. The Weak Law of Large Numbers
provides proof of the notion that if n independent and identically
distributed random variables, X;. Xo,..., X, from a distribution
with finite variance are observed, then the sample mean, X, should
be very close to g provided n is large. Mathematically, the Weak
Law of Large Numbers states that if n independent and identically
distributed random variables, Xy, X9, ..., X,, are observed from a
distribution with finite variance, then for all e > 0

X| o X
lim p| |22l s ) =0 (3.18)
n—0o0 TL

6]
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Proof: Consider the random variables X1,..., X, such that the
mean of each one is p and the variance of each one is 2. Since
¢ X o
E &=y and  var [t -
n n n
2
. a
(a) P(| X —pu| = k) < ys)
use version (a) of Chebyshev’s Inequality with & = ¢ to write
- 2
xYl+"'+A72 o~
— |z S —.
n ne:
which proves (3.18) since
_ X+ -+ X o2
lim p| | = pl=zel < lim — =10
n—o0 n n—00 ne=
6
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3.4.8 Skewness Earlier it was discussed that the second moment
about the mean of a random variable X is the same thing as the
variance of X. Now, the third moment about the mean of a random
variable X is used in the definition of the skewness of X. To facilitate
the notation used with skewness, first define a standardized random
variable X to be:
X X — nU"
o

where g is the mean of X and o is the standard deviation of X. Using
the standardized form of X, it is easily shown that E[X* = 0 and
var[X*] = 1. Define the skewness of a random variable X, denoted

71, to be the third moment about the origin of X*.

E[(X — p)?]

73

m=E [(X*)g] = (3.19)

64
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Positive values for 1 indicate a distribution that is skewed to the right
while negative values for 7| indicate a distribution that is skewed to
the left. If the distribution of X is symmetric with respect to its
mean, then its skewness is zero. That is, v = 0 for distributions
which are symmetric about their mean. Examples of distributions
with various 7 coefficients are shown in Figure 3.8.

Negative Skew Symmetric Positive Skew

1 I ‘ | 1 1 1

1= —04T4834 < 0 mnm=0 71 =0.47434 > ¢

Figure 3.8; Distributions with v, (skewness) coefficients that are negative, zero, and positive respectively.
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Example 3.25 Let the pdf of X be defined by p(z) = /15,
r =1,2,3,4,5. Compute v for the given distribution.

Solution: The value of v is computed to be
E[(X — p)?
41 = E[(X*)] = M = —0.5879747
a
which means the distribution has a negative skew. To compute the
answer with S, the following facts are used:
1p=E[X
2.0 = /E[X? — E[X]?
3. x* = X-u

o
= B[(x*)]
x <= 1:5
px <- x/15
EX <- sum(x*px)

RS
=

sigmaX <- sgrt (sum(x"2*px) - EX"2)
X.star <- (x-EX)"3/sigmaX"3

skew <- sum(X.star*px)

skew

[1] -0.5879747

YV V VY VY VYV "

60
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The moment generating function (MGF) of a discrete PMF is
M) = E@")
= > ef)

The MGF does not always exist!

When the MGF exists, it is unique and completely determines
the distribution.

67)
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 Sketch of the Proof (for Discrete R.V.):
The MGF can be written as
M@ = 3 )
(t
= Zf( D -
k=0
= ZZ f (x,)
k=0 j=1
z(—E(X’f)
i k!
D.B. Rowe

MARQUETTH
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 Sketch of the Proof (for Discrete R.V.):

If we differentiate the MGF w.r.t. 1 and evaluate at =0,

an nooo» . (tx_)k
M@y = 52 ri
o MO at”jzz;; )
* 2L an (fx.)k
= sz(xj) _ J'
=1 k=0 ot" k!
@O 7 i n 2 . 0
O (PR VA,
= or’ 2! !
= Y/ 0 — E()
Jj=1
D.B. Rowe y
MRRYETTH
QUESTIONS ? Be The Difference.

* ANY QUESTION?

7]
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