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Chapter 4

Univariate Probability Distributions

4.2 Discrete Univariate Distributions
4.2.1 Discrete Uniform Distribution

The random variable X is said to follow a discrete uniform distribution

with parameter n (where n € N) if the probability X takes on the
value 2 is the same for all z, where @ = 2z, x0,...,2y.
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When 2; = i fori = 1,...,n, it can be shown that the E[X] = 2L
2 . -
and that the var[X] = 251 respectively.
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Example 4.1 One light bulb is randomly selected from a box that
contains a 40 watt light bulb, a 60 watt light bulb, a 75 watt light bulb,
a 100 watt light bulb, and a 120 watt light bulb. Write the probability
function for the random variable that represents the wattage of the
randomly selected light bulb, and determine the mean and variance
of that random variable.

Solution: The random variable X can assume the set of values
Q = {40,60,75,100,120}. The probability density function for the
random variable X is

1 X

P(X =z[5) == for a=40,60,75,100,120.

)
The expected value of X, E[X]| = 79, and the variance of X, var[X]| =
804. S can be used to alleviate the arithmetic.

» Watts <- c(40,60,75,100,120)

» meanWatts <- (1/5) *sum(Watts)

» varWatts<- (1/5)*sum((Watts-meanWatts) *2)
» ans <- c(meanWatts, varWatts)

» ans

[1] 79 804
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4.2.2 Bernoulli and Binomial Distributions When the
Tossing a coin a single time is an example of a Bernoulli trial. A
Bernoulli trial is a random experiment with only two possible outcomes.
The outcomes are mutually exclusive and exhaustive.

[For example, success or failure, true or false, alive
or dead, male or female, etc. A Bernoulli random variable X, can
take on two values, where X (success) = 1 and X (failure) = 0. The
probability that X is a success is @, and the probability that X is a
failure is o = 1 — 7. Box (4.2) gives the pdf, mean, and variance of a

Bernoulli random variable.

Bernoulli Distribution X ~ Bernoulli()
PX =z|r) =71 —-m)!7%, 2=0,1
EX]|=nx (4.2)
var[X| = 7(1 — 7)
Mx(t)=mel + o
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* Consider the following probability experiment. | give you a
surprise four-question multiple-choice quiz.

¢ You have not studied the material, and therefore you decide to
answer the four questions by randomly guessing.

Answer Page fo Quiz

* Here are some AP tteaCirel the best answer 0 cach question.
N L a b
questions for you? TS S
4. a b c

How many of the four questions are you likely to have answered correctly?
How likely are you to have more than half of the answers correct?

3. Whatis the probability that you selected the correct answers to all four
questions?

4. What is the probability that you selected wrong answers for all four questions?

5. If an entire class answers the quiz by guessing, what do you think the class
“average” number of correct answers will be?
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* To find the answers to these questions, let’s start with a tree
diagram

Question  Question  Guestion  Guestion
1 2 3 4 Outcome
c cece
p —_ ccew
c cowe
< — Em
c cwee
w< — cwew
cwwc

c weee
< < —w weew

c WOWC
< W<:W WOWW
c wwece
¢ <i\f\l’ WWCW
WwWwC

C
W<w WA

O o R W= MR W N W W R

¢ Each of the four questions is answered with the correct answer
(C) or with a wrong answer (W).

¢ x is the “number of correct answers” on one person’s quiz
when the quiz was taken by randomly guessing.

THE BINOMIAL S
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* Notice that:

- The eventx = 4, “four correct answers,” is shown on the top branch.

- The eventx = 0, “zero correct answers,” is shown on the bottom branch.
- The event x = 1 occurs on four different branches.

- The eventx = 2 occurs on six branches.

- The eventx = 3 occurs on branches.

Question Question Question Quuestion
Outcome x

- Eachindividual question has only one
Ccccc 4 S
correct answer. ccow 3

1 2 3 4
c< —
™ . C CCwWC 3
- The probability of selecting the correct . < wt—f::W o )
="
w< W

- .1
answer to each questionis -. cwce 3
3 cwew 24—
- The pr ility that a wron c cwwe 24—
e probability t ata2 ong w——° e
answer is selected is -. c weee 3
3 C.::::W WCCW 2 Sr—

be found by calculating the probabilities weww e
of all the branches and then combining

the probabilities for branches that have the
same x values.

The probability of each value of <
- Wi 2 Sr—
e probability of each value of x can < W“i\i cwe
WWCC 2
W< C<VCV WANCW | —ri

c WAWWC 1 —i]
w
<:W Wwww ()
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* P(x = 0) is the probability that the correct
answers are given for zero questions.

2. 2 _2_2 2\* 16
- P(XZO)ZEXEXEXEZ(E) ZEZ 0.198

— Note: Answering each individual questionis a
separate and independent event, thereby we can use:
_ P (A and B) — P(A).P(B) Question Question Question Ou:shcu

* P(x = 4) is the probability that correct :
answers are given for all four questions. == o

4 € C wewc 2

1 1 1 1 1 1 W
- P(X=4)=-><—><—x—=(—) =—=0.012 0 wow
3 3 3 3 3 81 W<C<vcv wwce f

n
AE/\”
o =
SAAH
2a0Q
2238
2333
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* P (x = 1) is the probability that the correct answer is given for
exactly one question and wrong answers are given for the other three
(there are four branches: CWWW, WCWW, WWCW, WWWC—and each
has the same probability):

3
~ P(x=1) =4x1x3x3x3=4xlx(3) =0.395
3 3 3 3 3 3
* P (x = 2) is the probability that correct answers i

4 Outeome «
are given for exactly two questions and wrong answers 0 T
N LA (6

are given for the other two (there are six branches) : C< — o
112 2 1\ 2 2\ 2 e "~ e
- Pr=2)=oxgxgxgxi=ox(3) x(5) = 0-296/’ <“<:<i o el
C CWWC 24—
s P (x = 3) is the probability that correct answers < omn o]

are given for exactly three questions and wrong answers C< <<, v e

are given for the other one(there are branches): \ <o e e
3 B ¢ W 2wy
- P(x=3) = XTxixoxi= X(l) x2=10.099 \\<‘<w wicy 1+
3 3 3 3 3 3 ¢ oW e

W<W Wwwiw 0

9/30/2019



THE BINOMIAL i
PROBABILITY DISTRIBUTION
4
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In general:

-
wew et
s i . oWC 2e
Probability distribution: o
\ M
0 0.198 \ C<~ Wooowow e
1 0.395 ¢ wWowe 2%
2 0296 \< <o v e
o W e
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1.000 C WA e
Probability Distribution for the W<W W0
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When a sequence of Bernoulli trials conforms to the following list of
requirements it is called a binomial experiment.
1. The experiment consists of a fixed number (n) of Bernoulli trials.
2. The probability of success for each trial, denoted by 7, is constant
from trial to trial. The probability of failure is ¢ = (1 — 7).
3. The trials are independent.
4. The random variable of interest, X, is the number of observed
successes during the n trials.
The probability that X is equal to 2 can be found in the following
fashion. Any particular sequence of  successes occurs with probability
’7.'1 (1 — ﬁ)(”_f") since there are x successes and (n — z) failures.
, nl :
However, there are (:?) = m possible sequences of 2 successes.
Write X ~ Bin(n, ) to indicate the random variable X follows a
binomial distribution with parameters n and 7. Box (4.3) gives the
probability X is equal to 2, the mean, the variance, and the moment
generating function of a binomial random variable.
1)
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Binomial Distribution X ~ Bin(n,7)

(n) (1 -1 2 =0,1,2,...,n
€T

P(X = z|n, )

EX|=n=m
var[X| = nr(l — m)
My (1) = (re! + o)"
[t is left as an exercise for the student to verify that E[X| = nr,
var[X] = nm(1 — 7}, and that the moment generating function of a
binomial random variable is My (t) = (mwef+0)™.

PDF of X - Bins, 03) CDF of X -~ Bin(5,03)
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Figure 4.1: Left geaph is the probability density function (P ) of a binomial random variable with n = 8 and = 0.3. Right graph is the comulative
distribution function (COF ) of a binomial random variable with r = & and x = 03 1
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Code to create graphs that represent the probability density function
and the cumulative distribution function for a Bin(8,0.3) random
variable follows. The graphs that are created are similar to those in

Figure 4.1.

» par (mfrow=c(1,2), pty="s")
» plot(0:8, dbinom(0:8,8,0.3), type="h", xlab="x",
ylab="P (X=x)", xlim=c(-1,9))

» title ("PDF for X~Bin(8, 0.3)")

» plot(0:8, pbinom(0:8,8,0.3), type="n", xlab="x",
ylab="P (X<=x)", xlim=c(-1,9), ylim=c(0,1))

» segments (-1,0,0,0)

» segments (0:8, pbinom(0:8,8,.3), 1:9,pbinom(0:8,8,.3))

» lines(0:7, pbinom(0:7,8,.3), type="p", pch=16)

» segments(-1,1,9,1, 1lty=2)

» title ("CDF for X~Bin(8, 0.3)")
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4.2.3 Poisson Distribution

o The Poisson distribution is very popular for modelling the number
of times particular events occur in given times or on defined spaces.

e [or example, one might count the number of phone calls to 911
between 1 A.M. and 2 A M., the number of accidents at a busy
street corner during a 24 hour period, or the number of typographical
errors on a single page of this book.

e When the number of outcomes in a given continuous interval are
counted, an approximate Poisson process with parameter A > 0
results if the following conditions are satisfied:

14
.
POISSON PROCESS S

(1) The number of outcomes in nonoverlapping intervals are independent.
In other words, the number of outcomes in the interval of time (0, ¢]
are independent from the number of outcomes in the interval of
time (¢,¢ + h| for any h > 0.

(2) The probability of two or more outcomes in a sufficiently short
interval is virtually zero. In other words, provided h is sufficiently
small, the probability of obtaining two or more outcomes in the
interval (¢, + h] is negligible compared to the probability of
obtaining one or zero outcomes in the same interval of time.

(3) The probability of exactly one outcome in a sufficiently short
interval or small region is proportional to the length of the interval
or region. In other words, the probability of one outcome in an
interval of length A is Ah.

19

9/30/2019



MARQUETTH
UNIVERSITY

Be The Difference.

The probability distribution of the Poisson random variable X,
representing the number of outcomes in a given time interval or space
region denoted by £ is
e—)n‘( )\t)'}j

PX ==
x!

M) = 2=0,1,..., \A>0. (4.4)

Poisson Distribution X ~ Pois(\)

A\ '—)\
B(X = 2|\) = ;’, . r=0,1,2,...

E[X] =X ' Poisson Calculator
arlX| = A
My(t) = MY

The Poisson distribution can be used to approximate binomial prob.
with A = nm provided 7 < 0.1 and nm < 5. See Example 4.8 on page 44
for an example of how the Poisson distribution is used to approximate
the probabilities of a binomial distribution.

1
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o Note that the parameter A, referred to as the intensity parameter,
represents the mean number of outcomes in either a fixed time
interval or a fixed spatial region.

e The Poisson distribution is particularly appropriate for modelling
“rare” phenomena or outcomes where the probability of success is
small.

e [Towever, whether or not data can be viewed as Poisson data depends
on whether the proportions of 0's; 1’s, 2’s, and so on are similar to
those predicted by the Poisson pdf given in Box (4.5).

e Given n independent Poisson random variables X, Xo,.... X,
with parameters Ay, Mg, ..., Ap respectively, ¥ = 377 X; ~

Pois(3°7 1 N = )\).

9/30/2019
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Example 4.4 [> Poisson: World Cup Soccer <| The
World Cup is played once every four years. National teams from all
over the world compete. In 2002 and in 1998, thirty-six teams were
invited; whereas, in 1994 and in 1990, only 24 teams participated. The
data frame Soccer contains three columns: CGT, Game, and Goals.
All of the information contained in Soccer is indirectly available from
the FIFA World Cup website, located at http://fifaworldcup.yahoo.com/.
The numbers of goals scored in the regulation 90 minute periods of
World Cup soccer matches from 1990 to 2002 are listed in column
Goals. There were a total of 575 goals scored during regulation time.
The game in which the goals were scored is in column Game. There
were 232 World Cup soccer games played from 1990 to 2002. There
were 64 games played in each of 2002 and 1998 and 54 games played
in each of 1994 and 1990.

Analyze the
number of goals scored during regulation play (90 minutes) of World
Cup soccer matches to verify that the scores follow an approximate
Poisson distribution. (?)

Solution:

>
>
» mean (Goals, na.rm=TRUE)
[
>
[
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First,examine the data to see how well it conforms to the Poisson
distribution. To calculate the observed number of goals scored during
regulation time for the 232 World Cup soccer matches use table().

Next, let’s verify that the mean and variance of Goals are

approximately equal
library ("PASWR")

attach (Soccer)

1] 2.478448
var (Goals, na.rm=TRUE)
1] 2.458408

Create a table to facilitate comparing the observed values (0BS) to
the expected values (EXP) as well as the empirical proportions (Empir)
to the theoretical proportions (TheoP) for a Poisson Distribution with
A = 2478448, the mean number of goals per game. The empirical
proportions are merely the number of goals in each category divided
by the total number of goals.

19
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R CODE: Be The Diference.

» OBS <- table (Goals)
» Empir <- round (OBS/sum(OBS), 3)
» TheoP <- round(dpois (0: (length (OBS)-1),
mean (Goals, na.rm="TRUE")), 3)

» EXP <- round (TheoP*232, 0)
» ANS <- cbind(OBS, EXP, Empir, TheoP)
» ANS
OBS EXP Empir TheoP

19 19 0.082 0.084

49 48 0.211 0.208
60 60 0.259 0.258
47 49 0.203 0.213
32 31 0.138 0.132
18 15 0.078 0.065

3 6 0.013 0.027

3 2 0.013 0.010

1 1 0.004 0.003

O J o Uk W N PO
O O O O O O O O
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Code to represent a probability density function and cumulative
distribution function for a Pois(A = 1) random variable similar to
the one shown in Figure 4.3 on the facing page follows.

» par (mfrow=c(1,2), pty="s")
» plot(0:8, dpois(0:8,1), type="h", xlab="x",
ylab="P",xlim=c (0,9), main="PDF")

plot (0:8, ppois(0:8,1), type="n", xlab="x",
ylab="F",xlim=c(0,9), ylim=c(0,1), main="CDEF")
segments (-1,0,0,0)

v

segments (0:8, ppois(0:8,1), 1:9, ppois(0:8,1))
lines(0:7, ppois(0:7,1), type="p", pch=16)
segments(-1,1,9,1, 1lty=2)

PDF of X ~ Pois{A=1) CDF of X ~ Pois(A=1)

YV V.V V

z z

Figure 4.3: Left graph is the probability density function :'pdf) of & Poisson random variable with A = 1. Right graph is the cumulative distribution

function {Cdf; of a Poisson random variable with A = 1.

2
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Example 4.5 Given a random variable X that follows a Poisson
distribution with parameter A, find the mean and variance of X. Use

the fact that; 00 p 2
A A B AN
r=0
Solution:
00 A\ ) Y 00 /\7‘—1
E[X] :Zrﬁe = de Z(?'—l)! =N,
r=0 r=I
e S AT )
var[X] = Z(? —A) A
r=0 '

rearr'a.l'lgil'lg terms

22
i
SOLIJTIQCN CONT. Be The Biflorence.
X oA\
var[X] = ) (r — M) Se N
r=0 "
. _ g A g A A
varlX] = e D T4 ) N =D T
r=0 =0 ' r=0
N o0 /\\'r" 2 X o0 A?._‘l
= : %M 20
¢ Z?(r—l)! ¢ Z(?‘—l)I
r=1 r=1
= i(? —1+1) A A2t — axZe
— (r—1)!

Y R AT e T ST
—¢ {;[?—1)(?11)!—2W—/\6 — 2\

9/30/2019
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Example 4.7 Telephone calls to a local 911 number are known to
follow a Poisson distribution with an average of two calls per minute.
Compute the probability that

(a) There will be zero calls during a one minute period.
(b) There will be less than five calls in a one minute period.

(¢) There will be less than six calls in one hour.

Solution: The answe)\r[? are: 2 > dpois(0,2)
() (X =0;A =2) = 25— = m—e_z = 0.135. [1] 0.1353353
DY B(X <=2y =S4 MeA =2 o 2 20 2) > ppois(4,2)
é 3 47( = )= Lo ( F+5+5) [1] 0.947347

(c) Note that the time period changes from one minute to one hour
(60 minutes). Consequently, the average number of calls in one hour
is A =2 % (60) = 120.
5 A= N > ppois(5,120)
FOY <5\ =120) = > (110
=0

1202 120° 1200 120°
_e‘120(1+120+ +——F—+—0 | =0

7l

2! 3! 4! 5!

24
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Geometric Distribution
in Wikipedia

9/30/2019
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Negative binomial Distribution
in Wikipedia

29

i MARQUETTH
UNIVERSITY

Be The Difference.

4.3 Continuous Univariate Distributions

4.3.1 Uniform Distribution (Continuous) X is a uniform
random variable defined on the interval [a, b] if its pdf is given by

1
= — ST<0
f(z|a,b) - a<z<b

Some common uses of the uniform distribution include random number
generation. Box (4.6) gives the pdf

Uniform Distribution X ~ Unif(a,b)
1
—— <a<
fGlab) =2 a<z<b
ElX] = b —; a
_ 2 4.6
mm=@J) (4.6)
etb _ eta.
My ={0—a "7
1 itt=0

21
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PDF for X ~ Unifia, b) CDF for X ~ Unif{a,b)

fiz)

Figure 4.4: The pdf and COF o the candom variable x ~ Unif{a, b)

Example 4.12 Given a continuous random variable X defined
over [a,b with pdf f(z|a,b) = ﬁ, a < x < b, find the expected
value and the variance of X.

2
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Solution: Using the definition for a continuous random variable
b b 1 51b
EX] = / z - flz)de = j 2 i a(l:r, =52 %
a a a
B b — a? (bralfb—a}) b+a
T 2b—a)  20b—a) 2
b L .
. , 1 1 23 S
E[xY - [« Iy = Sl
T —a™Th—a 3| "3b-a
a a
. 2 b —ad (b+a)
'a‘)(fj{Xz}fEXzf -
var[X] ( [ D 3(b—a) 4
2
- (b= a)(b® + ab + a?) B (b+a)? B 4(b? + ab + a?) B 3(b+a)
- 3(b—a) L 12 12
 A0% +dab + da® — (367 + Gab+ 34%)  b® — 2ab+ a?
B 12 12
(b—a)?
12 .
29
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Generating Pseudo Random Numbers

The generation of pseudo random numbers is fundamental to any
simulation study. The term “pseudo random” is used because once
one value in such a simulation is known, the next values can be
determined without fail, since they are generated by an algorithm.
Most major statistical software systems have reputable pseudo random
number generators. When using R, the user can specify one of several
different, random number generators including a user supplied random
number generator. For more details, type ?RNG at the R prompt.
Generation of random values from named distributions is accomplished
with the S command rdist, where dzst is the distribution name;
however, it is helpful to understand some of the basic ideas of random
number generation in the event a simulation does not involve a named
distribution. When the user wants to generate a sample from a

continuous random variable X with cdf /7, one approach is to use the
Inverse Transformation Method. This method simply sets F'y (X) =
U ~ Unif(0,1) and solves for X assuming F)El (U) actually exists.

3
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Example 4.14 Generate a sample of 1000 random values from a
continuous distribution with pdf f(z) = %:[“(2 —2?), 0<z <1
Verify that the mean and variance of the 1000 random values are
approximately equal to the mean and variance of the given pdf.
Solution: First, the edf is found, then Fiy(z) is set equal to v and
solved.
T 9 1{ 45 2t 15 P
Fy(z) = —t(?—t“)rlt:— - — :—:c“(4—:n‘).
x(2) [0 3 3 ( 4 3 '
Solving for @ in terms of w by setting « = Fx(z):
u = };72 (4— %)
3u = 42% — 2t multiply by 3 and distribute 22
—3u+1 =2 =422+ 4 multiply by — 1 and add 4 to cor
—3u+4 = (2% —2) factor
+V/Bu+4 =2*—-2 take the square root of both sides
24 /Bu+4 =22 add 2
T2+ vV-3Bu-+4=u take the square root of both sides
3
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The mean and variance of the 1000 simulated random values using
set.seed(33)

» set.seed(33)

» U <- runif (1000)

» X <- sqgrt((2-sqgrt (4-3*U)))
» mean (X)

[1] 0.6152578

» > var (X)

[1] 0.05809062

» f <- function(x){(4/3)*x* (2-x"2)}
» ex <- function (x) {x*f (x)}

» ex2 <- function (x) {x"2*f (x)}

» EX <- integrate(ex,0,1)

» EX2 <- integrate(ex2,0,1)

» VX <- EX2Svalue - EXSvalue”?2

» c(EXS$value,EX2Svalue, VX)

[1] 0.62222222 0.44444444 0.05728395

3
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4.3.2 Exponential Distribution When observing a Poisson
process such as that in Example 4.4 on page 25 where the number of
outcomes in a fixed interval such as the number of goals scored during
90 minutes of World Cup soccer is counted, the random variable X,
which measures the number of outcomes (number of goals), is modeled
with the Poisson distribution. However, not only is X . the number of
outcomes in a fixed interval, a random variable but also is the waiting

time between successive outcomes. If W is the waiting time until the

first outcome of a Poisson process with mean A > 0, then the pdf for
Wis j( ) /\8—)\'“! if w>0
wh =
0 ifw<0

Proof: Since waiting time is nonnegative, F'(w) = 0 for w < 0.
When w > 0,

Flw)=pW <w)=1—-p(W > w)
=1 —P(no outcomes in [0}, w))

9/30/2019
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Proof:  Since waiting time is nonnegative, F(w) = 0 for w < 0.
When w > 0,
Flw)=pW <w)=1—-p(W > w)
=1 —P(no outcomes in [0}, w))
(/\"U_!)“ef)‘u'
0!
11— e—)\‘w

11—

Consequently, when w > 0, the pdf of W is F/(w) = f(w) = Ae M.

The exponential distribution is characterized by a lack of memory
property and is often used to model lifetimes of electronic components
as well as waiting times for Poisson processes. A random variable is

said to be memoryless if

P(X > 1o+ 1

X > 1) =P(X > o) forall t1,45 > 0. (1.8)
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Be The Difference.

Exponential Distribution X ~ Ezp(A)
A= i 2 >0

:1': f—
f(z) 0 ifx<0

1 ¢ Exponential Distribution
7 X] = Applet

PDF for X ~ Ecp(3/4) CIDF for X ~ Ezp(3/4)

0.0

T T T T T T T T T T T T T
2 0 2 4 3 8 10 2 0 2 4 6 8 10
z

z
Figure d.5: The pdf ant CAF o the random variabte X ~ Exp(A =0.75)
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Example 4.16 Given X ~ Fzap(A), find the mean and variance

of X.

Solution:

E[X] = / are M da.

o0
0

Integrating by parts where v = z, and dv = Ae~™M dz obtain

0o
E[X] = —ze™ M ?/e_’\:" dz
0
1 jee 1
ez lo A

Before finding the variance of X, find £ [XQ}
E {Xﬁ] - j 22~ d (4.10)
0

MARQUETTH
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Be The Difference.
o0
E [X 2] — / 22 e M dx
0

e . EXx 7 .

Note that E[X] = [ zAe™ dz = === ze~M dz and integrate
0 0

(1.10) by parts where u = 22 and dv = \e™ dz:

o0
E {XQ] — _gle™ M ‘;C —/ —2me™ M dy
0
E|X] 2
0+2 = —5.
A A2

Using the fact that var[X] = F [Xz} — (E[X])%, obtain var[X] —

: 2
Lt :
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Quite often, the pdf for the exponential is expressed as
1 _.
f(ﬂ?):gr’, 3/6, x>0, 6>0,

where = <. Of course, the maf is then written as My (t) = (1—-6t)~"
and the reparameterized mean and variance are 6 and 62 respectively.

Note the relationship between the Poisson mean and the exponential
mean. Given a Poisson process with mean A, the waiting time until
the first outcome has an exponential distribution with mean % That
is if A represents the number of outcomes in a unit interval, % is the
mean waiting time for the first change.

MARQUETTH
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REMEMBER Be The Difference.

The exponential distribution is characterized by a lack of memory
property and is often used to model lifetimes of electronic components
as well as waiting times for Poisson processes. A random variable is
said to be memoryless if

P(X > to + tl‘){ >1) = P(X > tg) for all 1,19 > 0. (48)

If X denotes the lifetime of
an electronic component following an exponential distribution with
mean %, (4.8) implies that the probability the component will work
for to + {1 hours given that it has worked for {1 hours is the same as
the probability that the component will function for at least o hours.
In other words, the component has no memory of having functioned
for ) hours. Equation (4.8) is equivalent to

][’()( >ty +1, X > 1‘,1)
B(X > 1)
which is equivalent to
P(X > iy +1t1) =P(X > ta)P(X > 11). (4.11)
Since P(X > to+1)) = e~ M) — o= M= M1 — p(X > t)p(X > 1))

=P(X > 1),

39
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Example 4.17 > Fxzponential Distribution: Light Bulbs

<1 If the life of a certain type of light bulb has an exponential

distribution with a mean of eight months, find

(a) The probability that a randomly selected light bulb lasts between
three and twelve months.

(b) The 95" percentile of the distribution.

(¢) The probability that a light bulb that has lasted for ten months
will last more than twenty five months.

Solution: The answers are:
(a) Since X ~ Ezp (/\ = %) , the probability that a randomly selected

light bulb lasts between three and twelve months is

12
% L a3 —a/8 |* .
PB <X <12)= [ ce™/Pd — 7/ | "= —0.223150.6873 = 0.46
3
4
MARQUETIE
R CODEI Be The Difference.
» round (pexp(12,1/8) - pexp(3,1/8),4)

[1] 0.4642

» f1 <- function(x){(1/8)*exp(-x/8)}

» integrate(f1,3,12) # For R

0.4641591 with absolute error < 5.2e-15

(b) The 95" percentile is the value zg; such that

95 2951 .

(Y de — [ 2o t/8 gy — 22

]j(,z)(:c /89 T =160
—00 0

T

“ T

(i_% = =2

100

o5 = —81n(0.05) = 23.96586
» gexp(0.95,1/8)
[1] 23.96586

47
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(¢) The probability that a light bulb that has lasted for ten months will
last more than twenty five months mathematically is written P(X >
25/ X > 10). Because an exponential distribution is present, (4.8) can
be used to say that this is equal to P(X > 15) = e~15/8 — 0.153355.
Solve the problem with S as follows.

» l-pexp(15,1/8) ## applying memoryless property
[1] 0.153355

» (l-pexp(25,1/8))/(1-pexp(10,1/8)) ## without applying
memoryless

[1] 0.153355

42
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4.3.3 Gamma Distribution Some random variables are always
nonnegative and vyield distributions of data that tend to be skewed.
The waiting time until a certain number of malfunctions in jet engines,
and similar scenarios where the random variable of interest is the
waiting time until a certain number of events take place yield skewed
distributions. The gamma distribution is often used to maodel the
waiting time until the o™ event in a Poisson process.

Before defining the gamma distribution, review the definition of the
gamma function. The gamma function, I'(a), is defined by:
o0
[(er) = / e Tdr, a >0 (4.12)
0
Some of the more important properties of the gamma function include:
1.Fora>0,INa+1)=al(a)

2. For any positive integer, n, I'(n) = (n — 1)!

50 - vF
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In Section 4 on page 64, it was proved that the waiting time until the
first outcome in a Poisson process follows an exponential distribution.
Now, let W denote the waiting time until the oM outcome and derive
the distribution of W in a similar fashion. Since waiting time is
nonnegative, I'(w) = 0 for w < 0. When w > 0,

Flw)=pPW <w)=1—-pPW > w)
=1 — p(fewer than « outcomes in [0, w])

a—l k—A\w
(Aw)¥e
=1-2 I
k=0

Consequently, when w > 0, the pdf of W is F/(w) = f(w) whenever
this derivative exists. It follows then that

a—1 (/\U:‘I)k(g*/\'w(*)\) + Gi’\'iuf‘u‘(/\w.)kil)\

fw) = Flw)==3_ i

k=0
/\(/\w)a—le—)\’w X:t,u__,cr—le—)ru."
B (v —1)! B ['(ev)
44
MARQUETTH
UNIVERSITY
B Be The Difference.
Notice that different shapes are produced in Figure 4.7 for different
values of «. For this reason, « is often called the shape parameter
associated with the gamma distribution. The parameter X is referred
to as the scale parameter. Gamma Distribution X ~ I'(a, A)
A _ga—lo=Ar f o >0
J(z)=q )
e Gamma Distribution 0 if o <0
BIX]=3
Applet D)
a4
var[X| = e
Mx(t)=(1—=X"1)"%for t < A
(=] 'x'-»\\
o 2 4.6 s 1
Figure 4.7: Graphical illustration of the pdf; of aT(a, 4]
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Useful Relationships

1. Given X ~ I'(a, \). When o = 1, the resulting random variable
is X ~ Exp(A). That is, the exponential distribution is a special
case of the gamma distribution.

R
| —

Given X ~ (e, \). Whena = = and A =

variable has a chi-square distribution with n degrees of freedom.

, the resulting random

b

8

3. Given X ~ I'(a, A). Provided «v is a positive integer, the resulting
distribution is known as the Erlang. In this case, the Erlang
distribution gives the waiting time until the o™ occurrence when
the number of outcomes in an interval of length ¢ follows a Poisson
distribution with parameter At.

MARQUETTH
UNIVERSITY
Be The Difference.

Example 4.20 Suppose that the average arrival rate at a local fast

food drive through window is three cars per minute (A = 3). Find

(a) The probability that at least five cars arrive in 120 seconds.

(b) The probability that more than one minute elapses before the
second car arrives.

(¢) If one car has already gone through the drive through, what is the
average waiting time before the third car arrives?

Solution: The answers are:

(a) If the average number of car arrivals follows a Poisson distribution
with a rate of three cars per minute, then the average rate of arrival
for two minutes is six cars. Given that X ~ Pois(A = 6), the

e 067
= 1—0.28350565 = 0.7149135

P(X >5) = 1-P(X <4)=1-)
=0

» 1 - ppois(4,6)
[1] 0.7149435
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b outcome. Tt follows

(b) Let W represent the waiting time until the o*
that W ~ I'(ov = 2, A = 3). Consequently, the

PW >1)=1—pW <1)=1-prT(2,3)<1)

| 1
3 01w 3u
=1- 7 e Mdey =1— [ 3xe M 3dr
I /
0 0
Using integration by parts where v = 32 and dv = 3~ dg,
1 1
/31‘ e~ 3 dy = —3pe™ |(1) +f3e_31' da
0 0

—3e7% + [—6_31 5] =33+ [—6_3 - 1]

1—4e™ = 0.8008517.
In other words, P(W > 1) = 1 — 0.8008517 = 0.1991483.

» > 1 - pgamma(l,2,3)

» [1] 0.1991483

» gam23<-function (x) {9*x*exp (-3*x) }

» integrate(gam23,1,Inf) # R

» 0.1991483 with absolute error < 2.5e-05 4
MARQUETTH
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(c) This problem is really asking for the mean of a ['lav = 2, A = 3)
random variable. Note: o = 2 since one car has already arrived
and the problem requests the average waiting time until the third car
arrives. Therefore, E[X| = § = ;); [n other words, there is an average
wait nl'% of a minute before the arrival of the third vehicle given one
vehicle has already arrived. .

19
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M ARQVELLE
COMMON CONTINUOUS B e Difkrsce.
DISTRIBUTIONS:
* Uniform « Normal (=mean, o 2=variance)
- Wiki - Wiki
e Exponential e t(v=df)
- Wiki - Wiki
e Gamma e Chi-Square (v=df)
- Wiki - Wiki
e Weibull * F(vy=df,, v,=df,)
- Wiki - Wiki
* Beta
- Wiki
* Cauchy
- Wiki
MRRYETTH

4.3.7 Normal (Gaussian) Distribution

e The normal or Gaussian distribution is more than likely the
most important distribution in statistical applications.

e This is due to the fact that many numerical populations have
distributions that can be approximated with the normal distribution.

e [ixamples of distributions following an approximate normal distribution
include physical characteristics such as the height and weight of a
particular species. Further, certain statistics, such as the mean,
follow an approximate normal distribution when certain conditions
are satisfied.

e The pdf, mean, variance, and mgf for a normal random variable X
. . 2 . . -
with mean g and variance o= are provided in Box (4.14).

51
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M ARQVELLE
GAUSSIAN (NORMAL) DISTRIBUTION 8o T ifrsce.
Normal Distribution X ~ N(u, o)
1 7[:;:'—,(:.]2
flz) = ——=e 2?, —xo<z<o0,
2ro?
where — oo < p < 00, and 0 < 0 < 0. (4.14)
ElX|=pn
var[X] = o”
o242
My (t) = el 72

e Z-table (“D2L > Useful Links > Z, T and Chi"*2 Tables”)
- P(Z < z),where Z is astandard Normal, Z~N(u = 0,0% = 1).
* Normal calculator
o T'he pdf for a normal random variable has an infinite number of
centers and spreads, depending on both p and o, respectively.

e Although there are an infinite number of possible normal distributions,
all normal distributions have a bell shape that is symmetric around
the distribution’s mean.

57
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e Small values of o produce distributions that are relatively close to
the distribution’s mean.

e On the other hand, values of o that are large produce distributions
that are quite spread out around the distribution’s mean.

e Figure 4.8 on page 100 illustrates three normal distributions with
identical means, p, and increasing variances as the distributions
are viewed from left to right.

i i i

Figure 4.5: Three normal distributions sach with an increasing ¢ value as read from left to right

Mean and Standard deviation of Normal distribution
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The cdf for a normal random variable, X, with mean, g, and standard
deviation, o, is

x ‘
1 _[i—;a)z
Flz)=PX <2)=——= [ e 22 dL. (4.15)
Vono?
moc J

A normal random variable with ¢ = 0 and ¢ = 1, often denoted
Z . is called a standard normal random variable. The cdf for the
standard normal distribution, given in (4.17), is computed by first
standardizing the random variable X, where X ~ N(p, o), using the
change of variable formula in (4.16).

X —p
o

—

~ N(0,1) (4.16)

54
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(4.17)

Neither the integral for (4.17) nor the integral for (4.15) can be
computed with standard techniques of integration. However, (4.17)
has been numerically evaluated and tabled. Further, any normal
random variable can be converted to a standard normal random
variable using (4.16). The process of computing P(a < X < b) where

X ~ N(u,o) is graphically illustrated in Figure 4.9 on page 104.
Throughout the text, the convention zg, is used to represent the value
of the standard normal random variable Z that has o of its area to the
left of said value. In other words, P(Z < z5) = «. Another notation
that is also used in the text is ®(z4) = . Basically, the ®(value) is

9/30/2019
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the same as P(Z < value). That is, ® is the cdf of the standard normal
distribution. Likewise, ® ~}(a) = 24. The ® notation for the cdf and
inverse cdf is used more in Chapter 10.

To find the numerical value
of X, where X ~ N(u,0) and « is the area (or probability) to the
left of the value X, use the S command qnorm(p, mean=MValue,
sd=SValue) where p is the area or probability (this is equivalent to
o) to the left of X, MValue is the value of the mean, and SValue is
the value of the standard deviation. Note that if one is dealing with
the standard normal distribution, the mean=MValue or sd=SValue
arguments are not needed.

5
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Be The Difference.
]P{_a <X =h) ]P(x <b) P < a)
f=) fl=)
B a
4 H 2
J flz)dz § flz)dz I flzjdz
b & s
IP(Z’ < 2=k
[ fla)d flz)dz J fla)d
‘_;ﬁ oo o0
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Example 4.21 Scores on a particular standardized test [ollow a

normal digtribution with a mean of 100 and standard deviation of 10.

(a) What is the probability that a randomly selected individual will
score between 90 and 1157

(h) What score does one need to be in the top 10%7

(¢) Find the constant ¢ such that P(105 < X < ¢) = 0.10.

* Solution:

(a) To find P(90 < X < 115), first draw a picture representing the
desired area such as the one in Figure 4.10 on page 112. Note that
finding the area between 90 and 115 is equivalent to finding the area
to the left of 115 and [rom that area, subtracting the area to the left
of 90. In other words,

P90 < X < 115) = P(X < 115) — P(X < 90).

MARQUETTH

UNIVE‘RSITY
To find P(X < 115) and P(X < 90}, one can standardize using (4.16).
That is,
115 — 100

= ) —P(Z < 1.5),

P(X <115) =P <Z<
and

PX <90) =P (Z < 9010100> =P(Z < —1.0).
Using the S commands pnorm(1.5) and pnorm(-1), find the areas
to the left of 1.5 and —1.0 to be 0.9332 and (0.1586 respectively.

Consequently,

P90 < X < 115) = P(—1.0 < Z < 1.5)

= (19332 - 0.1587 = .7745.'

59

9/30/2019

30



MARQUETTH
UNIVERSITY
Be The Difference.

(b) Finding the value ¢ such that 90% of the area is to its left is
equivalent to finding the value ¢ such that 10% of its area is to the
right. That is, finding the value ¢ that satisfies P(X < ¢) = 0.90 is
equivalent to finding the value ¢ such that P(X > ¢} = 0.10. Since
the qnorm () function refers to areas to the left of a given value by
default, solve

X —100 _ ¢~ 100

0 = 10

PX <c)=P (Z = ) = 0.90 for e.

Using gnorm(.9), find the Z value (1.2816) such that 90% of the area
in the distribution is to the left of that value. Consequently, to be in
the top 10%, one needs to be more than 1.2816 standard deviations

above the mean.
C— IOD set
= 1.2816
10

and solve for ¢ = ¢ = 112.816.

To be in the top 10%, one needs to score 112.816 or higher.

MARQUETTH
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(c) B(105 < X < ¢) = 0.10 is the same as
105 — 100
P(X < ¢)=0.10 + B(X < 105) = 0.10 + P (Z < T) .
Using pnorm(.5),
P (Z < W) = P(Z <0.5) = 0.6915.

It follows then that P(X < ¢) = 0.7915. Using qnorm(.7915), gives

0.8116.
X —100 _c¢—100

(X <e)=P| Z = < = 0.7915

P(X < c) u(Z TR T ) 0.7915

is found by solving 0_1—500 = 0.8116 = ¢ = 108.116

Note that a Z value of 0.8116 has 79.15% of its area to the left of
that value.

6]
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The following S commands can be used to solve (a),(b), and (c)
respectively.
(a) (90 < X < 115)

> pnorm(115,100,10) - pnorm(90,100,10)
[1] 0.7745375
(b) B(X < ¢) = 0.90

> gnorm(.90,100,10)
[1] 112.8155

(c) P(105 < X < ¢) = 0.10

> gnorm(.10 + pnorm(105,100,10),100,10)
[1] 108.1151

6
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Pao < x < 115 Pix <115 Pix <on)
fl=)
us o
§ flxidz I flz)dz
. .
1 1 1
]P)(m‘:';on < 7 < Ls-i00, ]P[Z < s, ]P[Z < 205100
lz)
15 15 -1
| flz)dz I flz)dz [ fla)ds
e} e e
5
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Example 4.26 > Normal Distribution: Cell Phone Compo1
<1 Most mobile appliances today allow the consumer to switch from
the built in speaker and microphone to an external source. A manufacturer
of cell phones wants to package an external speaker and microphone
for hands free operation. A new company has patented a component
that allows the on-resistance flatness for both the microphone and
speaker to be lower than ever before. The cell phone company requires
that the on-resistance flatness be less than 0.7 ohms (£2). If it is
known that 50% of the components from the new company have an
ohm rating of 0.5 € or less and 10% have an ohm rating of 0.628 €2
or greater and the distribution of the ohm ratings is normal, then:
(a) Find the mean and standard deviation for the distribution of the
ohm rating of the components.
(b) If a component is selected at random, what is the probability that
its on-resistance flatness will be less than 0.7 €27
(¢) If 20 components are selected at random, what is the probability
that at least 19 components will have on-resistance flatness values
less than 0.7 €27

64
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Solution: Let X = the ohm rating of the patented components.
(a) Because a normal distribution is symmetric, the mean equals the
median. It is known that 50% of the components have an ohm rating
of 0.5 € or less, so px = 0.5. To calculate the standard deviation
of the components’ ohm ratings, use the fact that “10% have an ohm
rating of 0.628 €2 or greater.”

This means that  P(X < 0.628) = 0.9,
X—-05 _ .628— .5)
5

|
o
©w

which implies P (Z =
o o

Il

=
b
o

Because P(Z < 1.28) = 0.9, set
and solve for 0. — 8 —— = ¢

Therefore o = 0.1.

64
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(b) Calculate that the probability a component has an on-resistance
flatness less than 0.7 €2.

PX <0.7) =P (Z =

= P(Z < 2)
= 0.97725

X—-05 _07-05
<
. - 0.1

The answer computed with S is

> p <= pnorm(0.7,0.5,0.1)

> P
[1] 0.97725

6
MARQUETTH
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(c) Calculate the probability that at least 19 of the 20 components
will have an on-resistance flatness value less than 0.7 €. Let Y ~
Bin(20,0.97725).
20 190 ; ;
PY >19) =) <‘,)(037725y(1—-097725%“—'_.u9250
: i
1=19
To compute the answer with S type
> sum(dbinom(19:20,20,p))
[1] 0.92497
N
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Quantile-Quantile Plots for Normal Distributions

e Many of the techniques presented later in the book assume the
underlying distribution is normal.

e One ol the more uselul graphical procedures [or assessing distributions
is the quantile-quantile (QQ) plot.

e 10 help determine whether the underlying distribution is normal,
use the S function ggnorm().

e To understand the qgnorm() function, one needs to have some
understanding of S’s quantile () function.

e Recall that the cumulative distribution function (cdf) is F'(x) =
P(X <uz).
e The quantile () function is the inverse of the cdf, where this exists;

that is Q(u) = F~Nu).
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e The qqnorm() function works by first computing the quantiles of
the points (1 —1/2)/n for the standard normal distribution.

e The ordered sample values are then plotted against the quantiles.

e When the resulting plot is linear, it indicates the sample values
have a normal distribution.

e To help assess the linearity of the ggnorm() plot, it is often quite
helpful to plot a straight line through the 25th and 75th percentiles
also referred to as the first and third quartiles using the S function
qqline () which connects the pair of points (First Quartile Standard
Normal, First Quartile Data), (Third Quartile Standard Normal,
Third Quartile Data).

e For example, consider the values stored in the variable scores of
the data frame Score and reported in Table 4.2 on page 123 which
are the scores a random sample of twenty college freshmen received
on a standardized test.

69
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Table 4.2: Standardized scores (data frame Score)
1191107 |96 | 107 | 97103 94106 87 (112
991 9990|106 110( 99|105|100|100| 94
e The points (¢ — 1/2)/n are calculated as
(1-1/2)/20 = 0.025, (2—1/2)/20 = 0.075, ..., (20—1/2) /20 = 0.975,

corresponding standard normal quantiles of {0.025, 0.075, ..., 0.975}
are computed with qgnorm() to be {—1.96, —1.44, ..., 1.96} respectively.
e The S function ggnorm () plots the quantiles {—1.96, —1.44, ..., 1.96}

versus the ordered values in the sample, {87,90, ..., 119} as shown
in Figure 4.11 on page 124.

e The pair of points (First Quartile Standard Normal, First Quartile
Data), (Third Quartile Standard Normal, Third Quartile Data) are
(-0.637, 96.75) and (0.637, 106.25) respectively. Note how the line
in Figure 4.11 on page 124 created using the S function gqline ()
goes through the points (-0.637, 96.75) and (0.637, 106.25).
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To compute the pairs of values plotted in an S quantile-quantile
plot, issue the following commands.

> attach(Score)
> par(pty=”s”)
> X <= (1:20-1/2)/20 Normal Q-G Plot
> Xs <- gnorm(X) 8 + S
> Ys <- sort(scores) “
> plot(Xs,Ys) )
> quantile(Xs,c(0.25, 0.75)) £
25% 75%

105

-0.6371739 0.6371739
> quantile(Ys,c(0.25, 0.75))
25% 75%
96.75 106.25

Sample Quantiles

85 100

0

Thearstical Cuantiles

7]
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It is possible to tell from a quantile-quantile plot whether the distribution
has shorter or longer tails than a normal distribution. In addition, the
quantile-quantile plot will show whether a distribution is skewed and
in which direction the distribution is skewed. The right quantile-quantile
plots in Figure 4.12 on the facing page illustrate how distributions
that have a positive skew will appear as upward opening U shapes
in the quantile-quantile plot, while distributions with a negative skew
have downward facing U shapes.

Normal
SkewRight .
51 < Skewleft s

Normal Distribution
72
MARQUETTH
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Be The Difference.
The left quantile-quantile plots in
Figure 4.12 on the next page illustrate how distributions that have
short tails relative to the normal distribution will have an S shape
while distributions with tails longer than the normal distribution will
have an inverted S shape.
4 2 1] 2
Normal Distribution
N
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QUESTIONS?

* ANY QUESTION?
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