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Chapter 5

Multivariate Probability Distributions

5.1 Joint Distribution of Two Random Variables
5.1.1 Joint pdf for Two Discrete Random Variables
[f X and Y are discrete random variables, the function given by

pxyla,y)=PX =2,Y =y) (5.1)

for each pair of values (x, y) within the domain of X and Y is called
the joint pdf of X and Y. Any function px y(z,y) can be used as a

joint pdf provided the following properties are satishied:
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(i) pxg}’(ﬁi, y) > 0 for all 2 and y
(i) > > pxylz,y) =1
Ty

(i) P[(X,Y) e A = 3 Y pxyl(z.y)
(ry)eA

Property (iii) states that when A is composed of pairs of (2, y) values,
the probability P[(X,Y) € A] is obtained by summing the joint pdf
over pairs in A.
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Example 5.1 > Joint Distribution: Mathematics Grades
<1 To graduate with a bachelor of science (B.S.) degree in mathematics,
all majors must pass Calculus I11 and Linear Algebra with a grade of
B or better. The population of B.S. graduates in mathematics earned
grades as given in Table 5.2 on page 6.

Table 5.1: B.S. graduate grades in Linear Algebra and Caleulus 111

Linear Algebra (Y)
A B C
A 2 13 6
(X) Calculus I11 B 5 85 40
C 7 33 9

(a) What is the probability of getting a B or better in Linear Algebra?
(b) What is the probability of getting a B or better in Calculus I117

(¢) What is the probability of getting a B or better in both Calculus
1T and Linear Algebra?
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Table 5.1: B.S. graduate grades in Linear Algebra and Caleulus I11

Linear Algebra  (Y)
A B C
A 2 13 [
(X) Calenlus I B 5 85 40
C 7] 33 9

Solution: The answers are:

(a) Let the random variables X and Y represent the grades in Calculus
11 and Linear Algebra respectively. 1f A; represents the pairs of
Calculus 111 and Linear Algebra values such that the grade in Linear
Algebra is a B or better, then the probability of getting a B or better
in Linear Algebra is written

. 2+5
FIX,Y)EA]=)Y D pyylry = 200

(zy)ed

145
200
4
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Table 5.1: B.S. graduate grades in Linear Algebra and Caleulus I11

Linear Algebra (YY)
A B C
A 2 13 G
(X) Calenlus I B 5 85 40
C 7 33 9

(b) Let the random variables X and Y represent the grades in Calculus
[IT and Linear Algebra respectively. If As represents the pairs of
Calculus I1I and Linear Algebra values such that the grade in Calculus
[IT is a B or better, then the probability of getting a B or better in

Calculus 111 is written

PIX,Y) € Aol =D pxyle,y) =

(w)€2

24+ 13+6+5+35+40
200
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Table 5.1: B.S. graduate grades

inear Algebra and Caleulus I1I

Linear Algebra  (Y)
A B C
A 2 13 [
(X) Calenlus I B 5 85 40
C 7] 33 9

(c) Let the random variables X and Y represent the grades in Calculus
1T and Linear Algebra respectively. If As represents the pairs of
Calculus IIT and Linear Algebra values such that the grade in both
Caleulus IT and Linear Algebra is a B or better, then the probability
of getting a B or better in both Calculus 111 and Linear Algebra is
written

2+d+10T80 105
XY § > pxy i
il pxy(®Y) 200 ~ 200 "
(ry)eAs
MARQUETTF
UNI\:EA:,S]TY

For any random variables X and Y, the joint edf is defined in (5.2)
while the marginal pdfs of X and Y, denoted px(z), and py(y)

Table 5.2: B.S. graduate grades in Linear Algebra and Calculus 111

Linear Algebra (Y
A B C || Total(X)
Al 2 13 6 21
(X) Caleulus II1 Bl 5 85 10 130
Cl7 33 9 49
Total(Y) 14| 131 55 200

respectively are defined in Equations (5.3) and (5.4).

Fyy(z,y)=PX <2,Y <y}, —oo<z<o00, —00<y<o0
px(r) =Y pxyl(z.y) (5.3)

¥ =Y pxyl@y) (5.4)

9/30/2019
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In (a) of Example 5.1 on page 3, the problem requests the probability
of getting a B or better in Linear Algebra. Another way to compute

Table 5.2: B.S. graduate grades in Linear Algebra and Calculus I
Linear Algebra (Y)

A B C || Total(X)

A |2 13 6 21

(X) Calculuslll B 5 85 40 130
Gl 7 33 9 49

Total(Y) 14| 131 55 200

the answer is by adding the two marginals py (A) + py(B) = 210% +
%;‘8—% = {70% Likewise, (b) of Example 5.1 on page 3 can also be solved
with the marginal distribution for X: px(A)+px(B) = ->=)0—l@ +-£—%—8 =
151 - -

200
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5.1.2 Joint pdf for Two Continuous Random Variables
The joint pdf of two continuous random variables is any integrable
function fy y(z,y) with the following properties:

(1) fx.y(z,y) > 0forall z and y

@ [ [ fxyley)dedy=1

—00 —00

G E[(X.Y)e A= [f fxy(z.y)drdy
(z,y)EA

Property (3) implies that P[(X,Y) € A] is the volume of a solid over
the region A bounded by the surface fx y (z,y).

9/30/2019



MARQUETTH
UNIVERSITY
e The Differ

" and Y, the joint cdf is defined in (
while the marginal pdfs of X and Y. denoted fx(z), and fy(y )
respectively are defined in Equations (5.6) and (5.7).

For any random variables X

Fx y(x,y) = //f\/y?b)(lbd? —00 < ¥ < 00,

Solution: The answers are:

(5.5)
- —00 <Y <00
= /f;mf(:r-,y)dy: —00 < & < 00 (5.6)
fy(y) = / fxy(z,y)ds, —oo<y<oo (5.7)
1
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Example 5.2  Given the joint continnous pdf
. 1 if 0<ae<1, 0<y<]
fxyay =4t "0
' 0 otherwise
(a) Find Fy y(z = 0.6,y = 0.8).
(b) Find P(0.25 < X <0.75,0.1 <Y < 0.9).
(c) Find fx(x).

0.60.8
Fxy(z =06,y =08) —//fw{} r,s)dsdr
0 0
0.60.8 .
//1(lbfﬂ? /Oéﬁd? = (.48
0 0

11}
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Example 5.2 Given the joint continuous pdf
1 if 0<2<1, 0<y<1
Ixylz,y) =

(b) Find P(0.25 < X < 0.75,0.1 < Y < 0.9).
(c) Find fx(z).

0 otherwise

(b)
P(0.25 <z <0.75,0.1 <y <0.9)
().7_5 0.9 0.750.¢ 0.75
= / [xy(r,s)dsdr = // ldsdr = 0.8dr = 0.40
0.250.1 250.1 0.25
(c)
fx@ = [ Ixy@ydy=1, 0<z < .
12
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Example 5.3 > Joint PDF <] Find the value ¢ to make
Ix vz, y) = cxavalid joint pdf for 2 > 0,y > 0, and 2 < z+y < 3.

Solution'

7 3 27 3] 27e
\zl-]/crc@dz-c](x—r)dz ([T_?“ ol
22—z 2 i

312 ¢
crdyde =c | 2z —2%)de =c |z -3l =7
0 0 0 0]
27c 8¢ se 6
1/1—1/'2_———“=1 _
AT

9/30/2019



MARQUETTH
UNIVERSITY

Be The Difference.

5.2 Independent Random Variables

Two random variables are independent if for every pair of 2 and y
values, px y(z,y) = px(z) - py (y), when X and Y are discrete, or
Ixy(zy) = fx(z)- fy(y) when X and Y are continuous.

Example 5.4 Use Table 5.2 on page 6 to decide if the random
variables X, grade in Calculus 111, and Y, grade in Linear Algebra,
are dependent.

Table 5.2: B.S. graduate grades in Linear Algebra and Calculus 11T

Linear Algebra (Y}
A B C || Total(X)
Al 2 13 6 21
(X)  Caleulus 111 Bl 5 85 40 130
C| 7 33 9 49
Total(Y) 14| 131 55 200

14
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Solution: The random variables X and Y are dependent, if
pxy(,y) # px(x) py(y) for any (x,y). Consider the pair (z,y) =
(A, A), that is an A in both Calculus 11 and in Linear Algebra.

pxy(AA) = px(A) - py(4)

2 72 21 14
Al Bl ol T 200 200 200

(X) Caleulus 111 \: i‘ :_x:; f;EJ 2 21 X 14
Total(y) - |r1 l:: ,‘: Btl]g 200 /10’000

0.01 £ 0.00735

Since 0.01 #£ 0.00735, the random variables X and Y, the grades
in Calculus [T and Linear Algebra respectively, are dependent. It is
important to note that the definition of independence requires all the
joint_probabilities to be equal to the product of the corresponding
row and column marginal probabilities. Consequently, if the joint
probability of a single entry is not equal to the product of the corresponding
row and column marginal probabilities, the random variables in question
are said to be dependent. "

149
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Example 5.5 Arethe random variables X and Y in Example 5.2

-

independent? Recall that the pdf for Example 5.2 was defined as

1if 0<z<1, 0<y<l1

(1) =
fX,Y( y) 0 otherwise

Solution: Since the marginal pdf for X, fyx(x} = 1, and the
marginal pdf for Y, fy-(y) = 1, it follows that X and ¥ are independent
since fx y(x,y) = fx(x)- fy(y) for all z and y. n
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5.3 Several Random Variables This section examines the joint
pdf of several random variables by extending the material presented
for the joint pdf of two discrete random variables and two continuous
random variables covered in Section 5. The joint pdf of X1, Xo...., X,
discrete random variables is any function px, x,  x, (71, %9,..., Ty} =
P(X7 = 21, Xo = 29,..., X, = xp) provided the following properties
are satisfied:

() x| Xy, X, (21,22, 2n) = 0 forall 2y, 20, 2y,

(b) Z Z e ZIJJYI.IYQ,...:,YH(Q:L L2y 'T"FE) =1

Iy T3 Iy

() P[(X1, Xo, o, Xn) € AT =20 20+ XX Xy, X (T, 22, -, )

(z1,72,....7n) €A

9/30/2019
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RANDOM VARIABLES
The joint pdf of X7, X5, ..., X, continuous random variables, is any
integrable function fx, v,  x,(z1,22,...,2p) such that following
properties are satisfied:
(@) fx), X, Xn(Z1, 22, ..., 20) 2 0 for all 2,29, .. 2p.
by [ S Fxxx @ e, ap)dey day - day = 1
“ho —no -
(c)
P [("Yla X2: sy ){n) € A} — /:/ e le,JYQ,....,)(n('El‘, o, ... a'TTL)
(21,29,...,2n)EA
1
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INDEPENDENT RANDOM VARIABLES

Independence for several random variables is simply a generalization
of the notion for the independence between two random variables.
Xy, Xy, ..., X, are independent if for every subset of the random

variables, the joint pdf of the subset is equal to the product of the
marginal pdfs. Further, if X, X5,..., X, are independent random

Farther, if Xy, Xo,..., X}, are independent random variables with
respective moment generating functions My (1), Mx,(t), ..., Mx, ()
then the moment generating function of ¥ = Z:?: 1 CiXG I8

My (t) = Mx (e1t) x Mx,(cat) x - -+ x My, (ent). (5.8)
In the case where X7, Xs,..., X}, are independent normal random

variables, a theorem for the distribution of ¥ = a1 X| + -+ + ap Xy,
where a1, as, . ... ap are constants, is stated.

19

9/30/2019
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Theorem 5.1 If X, X5, ..., X, are independent normal random
variables, with means pi; and standard deviations o; fores = 1,2,. .. n,
the distribution of ¥ = a1 X|+a9 Xo+- - -+a, Xy, where ay, aq, ..., ap
are constants is normal with mean E[Y] = ajpu +aspus+- - - +anfin,

2
MARQUETTH
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Proof:  Since X; ~ N (g, 0;), the mof for X; is M x;(t) = eHitt=-
using the mgf from Box (4.14) Further, since the Xy, Xo,..., X, are
independent,
My (t) = Mxl(fal) X sz(mg) Koo X JWXR(HLHJ
n 5 & aZo2
Y aju+tt Yy 5t
— e =1 =1 "
which is the moment generating function for a normal random variable
T T
with mean Y a;p; and variance afo?.
=1 =1
27

9/30/2019
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5.4 Conditional Distributions Suppose X and Y represent the
respective lifetimes (in years) for the male and the female in married
couples. If X = 72, what is the probability that Y > 757 In other
words, if the male partner of a marriage dies at age 72, how likely is it
that the surviving female will live to an age of 75 or more? Questions
of this type are answered with conditional distributions. Given two
discrete random variables, X and Y, define the conditional pdf of X
given that ¥ = y provided that py(y) > 0 as

Pxy(@.y)

pyviyv(zly) =pPX =z|Y =y) = (5.9
x|y (@ly) =P | ) e )
2]
i
CONDITIONAL DISTRIBUTION FOR Be T ifrece.
I'WO CONTINUOUS RANDOM VARIABLES
If the random variables are continuous, the conditional pdf of X given
that ¥~ = y provided that fy(y) > 0 is defined as
fxylzy)
Ixylely) = ——/—— (5.10
x|v(zl () )
In addition, if X and Y are jointly continuous over an interval A,
PX € AlY =y) = ] _f‘\(l},—(;’l‘.|y) d.
A

9/30/2019
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Example 5.7 Let the random variables X and ¥ have joint pdf:

12 ./«
=r2—z—y) fol<z<], 0<y<1
[xyl@y) =47 DRI

0 otherwise

Find the pdf of X given Y =y, for 0 <y < 1.

Solution: Using the definition for the conditional pdf of X given
Y =y from (5.10), write

fxyl(z, fxylz,y) z(2—x—y)

fxylaly) = 2 l
fY(y) ] fYY T, y [ (2 -2 —y)dr
0

_z2—w—y) 6z2—z—y)

= for 0<ax<l,
273 — y/2 1—3y v

0<y<1

24
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Example 5.8 [>Joint Distribution: Radiators<l A local
radiator manufacturer subjects his radiators to two tests. The function
that describes the percentage of radiators that pass the two tests is

Ixylz,y) =8y, 0<y<z<1 (5.11)
The random variable X represents the percentage of radiators that
pass test A, and Y represents the percentage of radiators that pass
test B.

(a) Is the function given in (5.11) a pdf?

(b) Determine the marginal and conditional pdfs for X and Y.

(c) Are X and Y independent?

(d) Compute the pr()l)ablllt\ that less than & 5 of the radiators will pass
test B given that 3 5 have passed test 4.

(e) Compute the quantities: E[X], E [X?], var(X), E[Y], E[Y?],
and var(Y').

(f) Use S to represent graphically (5.11).

9/30/2019
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fxylzy)=8zy, 0<y<a<1

Solution: The answers are;

(a) The function (5.11) is a pdf since fy y(x,y) is nonnegative and

1z 1 T 1 3
/ j S8xy dy dx =8 f T / ydy| de =8 / Td.’z? =1
0 0 0 0 0 )
2
MARQUETTH
o e
fxylzy)=8zy, 0<y<z<1
(b} The marginal and conditional pdfs are:
g T
Ix(z) = / flz,y)dy = / Srydy = 42°, 0<z <1
0
. 1
fyly) = / fla, y)de = f Bryde =dy(1—y’), 0<y<1
Y
fxylz,y) 8xy 2x
fxy(zly) = = > = , y<az <1
g ) =93 1-4
Ixyl@y) Bzy 2y
xlylr) =—————=—7F=—=, 0<y<=x

Tyix(le) [x(2) 43 22 =Y=

]

9/30/2019
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" T
Ix(a) = / Sz, y)dy = f Seydy =12®, 0<a<1
0

. 1
Frly) = / J (. y)dz = f Saydr = (1 —y?), 0<y<1
Yy

fY\X(!/‘-l')— =—, 0<y<=z

fxyle,y) Sey 2y
Ix(x) 43 2’

(¢) The random variables X and Y are dependent since fx y(x,y) =
Szy # [x(2) - fy(y) = 1627y — 1627y,

(d) The probability that P (Y < és

X = 715) is computed as:

] ]
8 g
1 1 1 2y 1 1
P (Y < ] X = 5) = /leX(yg)dy = dey— 4y2\§ kT
B B 0 1
2
MARQUETIE
; oy Ixy(@y) Sxy 2z ’ N Be The Difference.
Fxy(aly) = 0 W 1 Y <z<l1
Tyixyla) = fxfi((i‘)y) % = % 0<y<=z
Likewise
* T2 22— U2
Fy v (z|y) = / flz|ly)dz = / I . oy<z<l
vy o Y 23.; yz
Fyx(ylz) = f_w fylz)dy = jo —Sdy="3 0<y<uz
g < 9 1 1 (1/8)2 1
PY <1/8X =1/2) = Fx(y=3x=2) = (/2P = =
29

9/30/2019
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(e) The quantities E[X], E [X?], var(X), E[Y], E [Y?], and var(Y)
are

1 1
. . | 4
E[X]| = /.’L‘ Az dr = 4]:1:4 dr ==
5
0 0
1 1
: o 2
E {Xﬂ = /.’2‘.‘) A dy = 4/:1?'5 dr = 3
0 0 5 16 ;
var(X) = B [X] = [BIX)? =S - 2= 2
- 3725 15
1 1
ElY] = / y - Ay(l —y?)dy = 14 / (v* —y')dy = .lir
5
0 0
1 1
; . ! |
B[V~ [ at -y =1 [P =)y -
(3]
0 0 N
var(Y) = E {Yz] _Eyproio 81
3725 2%

w

MARQUETTH
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(f) The following code can be used to create Figure 5.2 R

» function.draw <- function (f, low=-1, hi=1, n=30) {
r<-seq(low, hi, length=n)
z <-outer (r,r,f)
persp(r,r,z,xlab="X",ylab="Y",zlab="2", theta=-70)

}
» f3 <- function(x,y) {ifelse(x >= y, 8*x*y, 0)}
» function.draw(£3,0,1,25)

Figure 5.2: Graphical representation of fxy(v,y) =8ry, 0<y <z <1

3

9/30/2019
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Be careful not to assume the variance of the sum of two random
variables is the sum of the variances of each random variable. Only if
X and Y are independent is it true that var[X +Y] = var[X|+var[Y].
A simple example to show why this is not true in general is computing

var[X + X # var[X | +var[ X since var[X + X | = var[2X] = 4var[X].

However, if X, X9, ... X, are n independent random variables with

: 2 9 2 )
means iy, fto, . . . , jin, and variances o7, a3, . . ., a7 respectively, then
the mean and variance of Y = > | ¢;X; where the ¢;s are real
a o g - n . 2 _ ‘R 2.2 m
valued constants are py = Y7 cipy and oy = >0 cior. The

proofs of the last two statements are left as exercises for the reader.

3

MARQUETTH
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Example 5.9 Let X, X5,.... X, be a random sample from a
distribution with mean p and standard deviation o. Find the mean
and variance of Y = —X1+‘X3;"+/X'”.

— o XXyt Xy, o
Solution: In the expression Y = — , the ¢; values are
2
all % Consequently, jry = >, % = gt and U\f =3 (%)
. 2
(3"2 = 0,-—, n
* In general:
e var[aX + bY] = a?var[X] + b?var[Y] + 2ab cov[X, Y],
o where cov[X,Y] = E{(X — E[X]D(Y — E[Y])}
e var[}i-; a;X;] = Zﬁjﬂ a;ajcov[X;, X;]
_ 2
. =Y ajvar[X;] + Zi¢j a;ajcov[X;, X;]
N

9/30/2019
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5.5 Expected Values, Covariance, and Correlation

The expected value of g{ X, Y) is

if X and Y are discrete

> gl y) - pxy(,y)
—
Elg(X,¥)] = 000
I glzy) - fxy(z,y)dedy if X and Y are continuous
—00 —00
(5.12)

The conditional expectation of X given a value y of Y is written
2 v pxy(ly) if X and Y are discrete
~

E[X]Y]=<¢
[ z- fx‘y(r17|y) dr if X and Y are continuous
—00
(5.13)
34
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Example 5.10 Let the random variables X and Y have joint pdf

| eV/ret
Ixy(ay) = ———

Compute E [Y]X = z].

Solution: First, compute the conditional pdf fy‘ x(ylz).

x>0, y>0

N = =
f}’l){(ylm) - [xlx) S fy/;z): — S —y/e
‘ [——dy [F—dy
0 0

E*Q/I

z>0, y>0

€T
Using (5.13) for continuous random variables, write
o0
ef'y/l:

EY|X = 2] = /y‘ dy

0

9/30/2019
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Using (5.13) for continuous random variables, write
o0
i e_y/“t
ElY|X =2 = fy' dy
0
. . ~y/z .
Integrating by parts with u = y, and dv = £ 3,/ , obtain
o0
1 —y/z|>® . —y/x —y/z|™
ElY|X =z2] = —ye™ ¥/* . + | eV dy = 0+—ze” YIT g =5
0 x>0
]
MARQUETTH
UNIVERSITY

USEFUL RESULT i

When two random variables, say X and Y, are independent, recall
that f(z,y) = [x(x)- [y (y) for the continuous case and py y(x,y) =
px(z) - py(y) for the discrete case. Further, F[XY]| = E[X]- E[Y].
The last statement is true for both continuous and discrete X and Y.
A proof for the discrete case is provided. Note that the proof in the
continuous case would simply consist of exchanging the summation
signs for integral signs.

Proof:

EXY] =3 aypxyley) =Y > zypx(z)py(y)
Ty Ty

=S v Y zpx(e)
Yy xr

— E[Y]|E[X]

9/30/2019
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Example 5.11 Use the joint pdf provided in Example 5.8 on page 33
and compute E[XY].
fxy(zy) =8y, 0<y<az<l1

o
fx(@)= /[(:1'. y)dy = / Szydy = 123, 0<az<1
4 0

" 9
fyly) = / [z, y)dx = / Seyde =dy(1—y?), 0<y<1
y

1 1

E[X] —/'17~ \2® dy = /1 dx —:l
5
0
1 1
9 4 8
y-dy(l —yh)dy =14 /(y —y)dy=1¢
5
0 0
Solution:
1 x 1 T 1 .
- . 3 . o 1
EIXY] = zy-8xy dy dr = 8 [ y“dyl| dx =8 3 dr = 9
00 0 0 0 '
Since the random variables X and Y were found to be dependent in
part (¢) of Example 5.8 on page 33, note that
‘ .48 32 .
EXY =-#£FEX] ElY =-—=—
[]F}%[]['ﬁlfn 75
3
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5.5.2 Covariance When two variables, X and Y, are not independent
or when it is noted that E[XY]| # E[X] - E[Y], one is naturally
interested in some measure of their dependency. The covariance of
X and Y written Cov [X , Y}, provides one measure of the degree to
which X and Y tend to move linearly in either the same or opposite
directions. The covariance of two random variables X and Y is
defined as

Cov[X,Y|=FE (X —pux)(Y — py)]
(:): — 1)y — py)px y (T, y) X, Y discrete
OC OO
j J (@ —px )y — py)f(z,y)dedy X, Y continug
—0oQ —00
(5.14)

At times, it will be easier to work with the shortcut formula Cov[X, Y] =
E[XY] — px - py instead of using the definition in (5.14).

39
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Example 5.13 Compute the covariance between X and Y for
Example 5.8 on page 33. In patt (e) of Example 5.8, E[X] and E[Y’

were computed to be il and = 1“ respectively, and in Example 5.11

it was found that E'[XY} = 9

Ixylz,y) =8y, 0<y<az<l
1 1

, 3 |
E[X])= /;1‘- lo” do = l/;rl(l.r ==
5

0 0

1 1

ST .. 9 4 8
E[Y] —/u ty(1 —y*)dy =4 /(y —y)dy=12
o]

0

T |
p. D
F[XY] —// zy-8zy dy dv —\/ |\T2/y2([yj (1.1'—8/%(/.1‘—%
3 ¢
0 0

00

Solution:
4 4 8 4 m
Cou[X,Y] = EXY —puxpy ==—=-—=—
4
MARQUETTH
UNIV EA:SITY
Example 5.12 Compute the covariance between X5 and Y] for the
values provided in Table 5.3 on the next page given that px y (2, y) =
LO for each (z, y) pair.
x|yl x| vl | x| v
581 80 58 | 120( 25.5 | 30.0
72| 80 721 1200 27.0 | 33.0
721 90 72| 1100 30.0 | 34.5
861 90 86 | 1100 33.0 1 33.0
86| 100 36 | 1000 34.5 | 30,0
100 | 100 100 | 1000 33.0 1 27.0
100 | 110 100 | 900 30.0 | 25.5
114 | 110 114 | 900 27.01 27.0
114 | 120 114 | 800 28.8 | 30.0
128 | 120 128 | 800 31.2 | 30,0
41

9/30/2019

21



MARQUETTH
UNIVERSITY

Be The Difference.

Solution
px,(® Z px, v (@)
T2+ +128
HXy = ; z-px,(r) = 5 =93
80+80+---+120
1y, = Z y-py,(y) = = ~ 100

Cov[X1,Y1] ZZ z = px )Y — my)px, v (2, 9)
—~

1
— (58 — 93) - —100) - — += (72 —93) . (80 —

(58 — 93) - (80 — 100) - 75+ (72 — 93) - (80 — 100) - 7 +
+ (128 — 120) - (120 — 100) -

= 280

10

42
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e A Cov[X,Y] > 0 indicates that generally, as X increases, so does
Y (that is, X and Y move in the same direction);

¢ 'To gain an intuitive understanding of covariance, see Figure 5.3 on page
which has both horizontal and vertical dotted lines to indicate py,

and H Yi Con[ X1, ¥i] = 280

120
.
.

90
-
.

8 1e .

&0 80 100 120

e The first plot in Figure 5.3 exhibits a strong positive relationship.

e By this it is meant that large values of X tend to occur with large
values of Y and small values of X tend to occur with small values
of Y.

e Consequently, (z— px ) will tend to have the same sign as (y — py ),
so their product will be positive.
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o whereas, a Cov|X, Y] < 0 indicates that generally, as X increases
Y decreases (that is, X and ¥ move in opposite directions).

e [n the center plot of Figure 5.3, the relationship between the two
variables is negative, and note that (z— gy, ) and (y — pry; ) tend to
have opposite signs, which makes most of their products negative.

Cov[Xy,Y;] = 280 CoulXp, Yz] = —2800 Cov[X3, Y] = 0
= s
& . [ ER D [ )
& 3 :
- . : .
2 . . e . . @ :
- - © H
X Ty Sring e g nEine -3 PSP PP S -
5 . . g . . & :
. : .
@ :
R D) 8 . . [
60 80 100 120 80 80 100 120 26 28 30 Az a4

44
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When one examines the first two plots in Figure 5.3 on page 58,
the dependency in the left plot seems to be about as strong as the
dependency in the center plot, just in the opposite direction. However,
the Cov|X, Y] = 280 in the left plot and Cov[X,Y ] = —2800 in the
center plot. It turns out that the dependencies are the same (just in
opposite directions), but the units of measurement for the ¥ variable
in the center plot are a factor of 10 times larger than those in the left
plot. So, it turns out that covariance is unit dependent. To eliminate
this unit dependency, scale the covariance.
Cov[ X1, ¥;] = 250 Cou[Xz, Ya] = —2800
s - g
o
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5.5.3 Correlation

e The correlation coefficient between X and Y denoted py y,
or simply p is a scale independent measure of linear dependency
between two random variables.

e The independence in scale is achieved by dividing the covariance
by oy oy

e Specifically, define the correlation between X and Y as

Cov[X,Y] o
pPXy =—— (5.15)
TXoy
e The correlation coeflicient measures the degree of linear dependency
between two random variables and is bounded by —1 and +1.

e The values p = —1 and p = +1 indicate perfect negative and
positive relationships between two random variables. When p = 0
there is an absence of linear dependency between X and Y.

4
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e [f X and Y are independent, it is also true that p = (; however,
p = 0 does not imply independence.
e A similar statement is true for the Cov[X,Y]. That is, if X and
Y are independent, Cov[X,Y] = 0; however, Cov[X, Y] = 0 does
not imply independence.
Example 5.14 Compute py y for Example 5.8 on page 33. Recall
that C(m[X,}'.': = ?_Iy-; was computed in Example 513 on page 64,
and var[ X | = 7‘% and var[Y] = 21—;_% in part (e) of Example 5.8 on page 33.
Solution:
. 4
Cov| X, Y -
pxy = SN 7B g
! TxXoy 2 11
p
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Example 5.15 Given the random variables X and Y with their
joint probability distribution provided in Table 5.4, verify that although
Cov[X,Y] =0, X and Y are dependent.
y
1ol
11111
A sls]s
- 1 1
X 0] 5|0z
| | 1
Ll s[5]8
4
v MARQUETTH
ol ety
1| & H i
of Lol
g
Solution: Start by computing the quantities F[XY], E[X], and
E[Y] to use in the shortcut formula for the covariance.
3 2 3
EX=(-1)=+(0)-=+(1)- ==
X] = (1) 24+(0) -2+ (1) -2
EY] = (-1)-240)-2+1)-2=0
B 8 8 8 X
E[XY]:(—1-—1}-§*-~—:—(1-1}-§:O
Cov[X,Y] = E[XY] - E[X|-E[Y] =0
The covariance for this problem is 0. However, the random variables
are dependent since
1 33 9
PX==-1LY==l)==-ZpX==1)-PY=—1)==-—=—.
This example reinforces the idea that a covariance or correlation
coefficient of 0 does not imply independence. .
19
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Example 5.16 Compute px, y; for Example 5.12 on page 9. Recall
that s, = 93, p1y, = 100 and Cov[X, V7] = 280.

Xjn| | Xl %
58| 80 581 1200
‘{—2 80 72 -l 200 Cov[X1,Y;] = 280 ) Cov[Xz, Ya] = —2800
72| 90 7201100 °
86 | 90 86 | 1100 | ¢ go. e
86 |1 100 86 | 1000 =3 [T ................ -3 (RTINS ST
100 | 100 100 [ 1000 | | . . : ..
100 | 110 100 | 900 )
114 110 114 900 ) ;ﬂ * 80 100 120 - 60 80 100 * 20 *
114 | 120 114 | 800
128 | 120 128 | 800
5
MARQUETTH
e
Solution: Start by computing the quantities £ [X f‘] E [Yﬂ ,OX,
and oy,
E {X%] = Z.’x:szl(:r)
xT
e L g2 L ggg
100 7 10 T
EYE] =Y v i)
Y
802 - 802 L ... 21202 & — 10200
h 10 10 T
¢ 9 ¢
var[Xj] = E {Xf] — (E[x1))* = 9090 — 93% — 441
ax, = Vvar[Xj] = V44l = 21
var[vy) = E [v?| — (E[y1])” = 10200 — 100 = 200
ay, = \/var[Y1] = v200 = 14.14214
Cov [‘Yl- YlJ 280 ,
- S — 0.9428087
PN T Ty oy, 21 x 1414214 {
51
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> cor(X1,Y1)
[1] 0.942809
il

[t is worthwhile to note that px, y, = 0.9428087 and px,y, =
—0.9428087 for the left and center plots respectively in Figure 5.3

In other words, the correlations have the same absolute magnitude for
both plots, even though the absolute values of the covariances differ
by a factor of ten.

CoulXy, ¥i] = 280 Col Xz, ¥3] = —2800

8 ) i

] . . 8 . .

g24{e e 8 . e

60 80 100 120 60 &0 100 120
52
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5.6 Multinomial Distribution

e The multinomial distribution is a generalization of the binomial
distribution. Recall that each trial in a binomial experiment results
in only one of two mutually exclusive outcomes.

e [xperiments where each trial can result in any one of & possible
mutually exclusive outcomes Ay, ..., A; with probabilities P(A4;) =
mi, 0 < m; < 1, for i = 1,...,k such that Zf:l’iri =1 can be
modelled with the multinomial distribution.

e Specifically, the multinomial distribution computes the probability
that A; occurs x| times, Ay occurs xo times, ..., A; occurs xp,
times in n independent trials where 2y +x9 + -+ +z3. = n.

e 'To derive the probability distribution function, reason in a fashion
similar to that done with the binomial.

o
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e Since the trials are independent, any specified ordering yielding x|
outcomes for Ay, x9 outcomes for Ao, ..., and x; outcomes for A

. . a1 : xIr.
will occur with probability Tl'flﬂ'gz - -:'rk*.

e The total number of orderings yielding 21 outcomes for A;, 9
. !
. o for A, , . o o . n!
outcomes for Ay, ..., and 2, outcomes for Ay, is T

e With these two facts in mind, the probability distribution, mean,
variance, and mgf of a multinomial distribution can be derived. All
are found in Box (5.16).

Multinomial Distribution X ~ MN(n,7,...,7)

|
n Ty_xy | _Tp

P(X = (z,....2 )0, T, ... ) - T T T

E[X;] = nm;
var [X;| = nm(1 — m;)
given that each X; ~ Bin(n, ;)
Mx(t) = (Fletl + ’n'getg +--+ ﬂ'kfletk_l + Wketk)n

(5.16)
54
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Example 5.17 The probability a particular type of light bulb lasts
less than 500 hours is 0.5 and the probability the same type light bulb
lasts more than 800 hours is 0.2. In a random sample of ten light
bulbs, what is the probability of obtaining exactly four light bulbs
that last less than 500 hours and two light bulbs that last more than
800 hours?
Solution: Let the random variables X, X9, and X3 denote the
number of light bulbs that last less than 500 hours, the number of
light bulbs that last between 500 and 800 hours, and the number of
light bulbs that last more than 800 hours respectively. Since 7 = 0.5,
m = (0.3 and w3 = 0.2, use the first equation in Box (5.16) and
compute P(X] =4, Xo =4, X3 =2) as
v 4 v . . 10! 41y 4 012
P(X] =4, Xo =4, X3 =2/10,0.5,0.3,0.2) = 41410[(0'5) (0.3)7(0.2)
= 0.0638,
.
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5.7 Bivariate Normal Distribution

The joint distribution of the random variables X and Y is said to
have a bivariate normal distribution when its joint density takes
the form

1

1 (:1: - ]J.X)
= eXpPq — ,
2royoy\/1— p? 2(1 - p?) D ¢

R Y — - — r 2
py (1- Jux) (y ,u-y) N (y Hy) ” (5.17)
oX oy oy

for —0o < z,y < +oo, where py = E[X], uyy = E[Y], 0% =

var[X], af, = var[Y] and p is the correlation coefficient between X
and Y.

fX,Y'('rJ y) =

5
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An equivalent representation of (5.17) is given in (5.18) where
X = (X ,Y)T is a vector of random variables where T' represents
the transpose, p = (py,py)?, is a vector of constants, and ¥ a
2 x 2 nonsingular matrix such that its inverse £ 71 exists and the
determinant |X| # 0 where
var[ X|  Cov[X.Y]
3=
CoulY,X] varlY]
Jx) = e = P exp L L x — T X -y b 518)
Wt P\ —3 K. K)o 5.
N
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MULTIVARIATE NORMAL MARQUETTH
DISTRIBUTION

The shorthand notation used to denote a multivariate (bivariate being
asubset) normal distribution is X ~ N(p, ). In general, X represents
what is called the variance covariance matrix. When X = (X1, Xo, ..., X))

- [ [ X1 —m
Y=F(X-pw(X-—pf]=FE : (X1 —pr, . Xp — tin)
Xo— pin
U?Yl .. Cov(Xq, Xp)
Cov(Xn, X1) ... ox
1 ERV- TN B PR S
f(x) = —— %] expd —=(X —p) T (X — p)
(v2r) 2
where
- Meanvector: n
- Covariance Matrix: X
- MGF: My(t) = exp(pTt + T Xt)
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Different representations of four bivariate normal distributions all
with parameters py = iy = 0, ox = oy = 1, and p values of 0,
0.30, 0.60, and 0.95 respectively are provided in Figure 5.4

» functionl.draw <- function(f, low=-1, hi=1, n=50) {
> xy <- seqg(low, hi, length = n)

> z <- outer (xy, xy, f)

> persp (xy, Xy, z, axes=FALSE, box=TRUE)

>}

» fl <- function(x,y) {

> r <- 0.30

> exp ( (x"2-2*r*x*y+y”~2) / (-2*(1-r"2)) )/

> (2*pi*sqgrt (1-r"2))

>}

» par (mfrow=c(1,3), pty="s")

» x <- seq(-3,3,1length=100)

» y <- x

» functionl.draw(f1,-3,3,20)

» contour (x,y,outer (x,y,fl),nlevels=10)

» image (x,y,outer (x,y,fl),zlim=range (outer (x,y, fl)))

59
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o= 0.00 P =030 p =060 o =095

SOME FACTS ABOUT MARQUETTH
BIVARIATE NORMAL DISTRIBUTION
° X — ‘u X — O—)% O—XY __ Oxy

If (Y) N [M = (My),f = (ny 0}3 )l, andp = e

The following facts about the bivariate normal distribution are listed
without proof.

(a) The marginal distribution of X is N(py,ox).
(b) The marginal distribution of ¥ is N (uy, oy ).
(c) If X and Y have a bivariate normal distribution, the conditional
density of Y given X = x is a normal distribution with mean
a ¢
pylz = EY|z) = py + p—Y(x — px) and variance o%.lI =
a
o‘%( 1—p?).

(d) Given any two constants a and b, the distribution of a X + bY is

£

Nlapy + by, \/ a2cr?‘{ + b2a§, + 2abpo yoy)

6]
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SOME FACTS ABOUT MARQUETTH
MULTIVARIATE NORMAL DISTRIBUTION se o Bt

X u Xy X
- ! (y) ~N [" - (ui) 2= (zy); z)i,y)] :
The following facts about the bivariate normal distribution are listed
without proof.
a) The marginal distribution of X is N (uy, Xx)
b) The marginal distributionof Y is N (uy, Zy)
c¢) The conditional distribution of Y given X = xisa
multivariate normal distribution with mean
v pyx = py + ZyxZxt(x — py)
and variance
v Zyx =Zy — ZyxEx ' Zxy
d) Given any matrix A and vector b, AX + b is a multivariate
normal distribution with mean and variance:

V' Bax+p =Apx+b Zaxsp = AZxA"
6
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Example 5.18 [> Bivariate Normal Grades < Let us
assume that the distribution of grades for a particular group of students
where X and Y represent the respective grade point averages in high
school and the first year of college respectively follow a bivariate
normal distribution with parameters py = 3.2, py = 2.4, ox = 0.4,
oy = 0.6, and p = 0.6. Find the following:
(a) (Y < 1.8)
(b)P(Y < 1.8| X = 2.5)
(c) (Y > 3.0)
(d)r(Y > 3.0/ X =2.5)
o
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Solution: The answers are computed first manually then with S.

(a) Using the parameters given in the problem,
Y—-24 18-24
<
0.6 0.6

> pnorm(1.8,2.4,.6)
[1] 0.1586553

P(Y < 1.8) = 1@( ) =P(Z < —1)=0.1586

(b) First, find the quantities py|;_9 5 and oy |,_g 5.

ay

Hy|e=25 = E(Y|x = 2.5) = py + o (z — pux)
0.6
=24+06-57-(25-32) =177

s = (1= p2) = 067+ (1= 0.6%) =0.2304 = oy, 5 = 043

64
MARQUETTH
o
o 1elv o= Y -1.77 _ 1.8-1.77 ; o

P(Y < 1.8]X = 2.5) = ||D< T < IR ) = P(Z < 0.0625) =

(0.5249,

> pnorm(1.8,1.77,.48)

[1] 0.5249177

(c) Using the parameters given in the problem,

Y —-24 30-24
PY >30)=1—-pPY <30)=1—P <
( ) ¥'=39) <0.6_O.G)
=1-P(Z <1)=0.1586

> 1-pnorm(3,2.4,.6)

[1] 0.1586553
o
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(d) Using the quantities 1y | and Ty |1 from (b),

P(Y > 30X =25)=1—-PY <3.0|X =2.5)

;o rdard :') . o iard
_1_p Y 1.(!’£J.0 1.77
0.48 0.48

=1—-p(Z <2.5625)
= 0.0052.

> 1-pnorm(3,1.77,.48)
[1] 0.005196079

[
6
MARQUETTH
UNIVERSITY

Be The Difference.

QUESTIONS?

* ANY QUESTION?

61
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