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Chapter 6

Sampling and Sampling Distributions

6.1 Sampling

The objective of statistical analysis is to gain knowledge about certain
properties in a population that are of interest to the researcher. When
the population is small, the best way to study the population of
interest is to study all of the elements in the population one by one.
This process of collecting information on the entire population of
interest is called a census. However, il is usually quite challenging
to collect information on an entire population of interest. Not only
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do monetary and time constraints prevent a census from being taken
easily, but also the challenges of finding all the members of a population
can make gathering an accurate census all but impossible. Under
certain conditions, random selection of certain elements actually returns
more reliable information than can be obtained by using a census.
Standard methods used to learn about the characteristics of a population
of interest include simulation, designed experiments, and sampling.

Simulation studies typically generate numbers according to a researcher
specified model. For a simulation study to be successful, the chosen
simulation model must closely follow the real life process the researcher

is attempting to simulate. For example, the effects of natural disasters,
such as earthquakes, on buildings and highways are often modeled
with simulation.
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Sampling is the most frequently used form of collecting information
about a population of interest. Many forms of sampling exist, such as
random sampling, simple random sampling, systematic sampling, and
cluster sampling. It will be assumed that the population from which
one is sampling has size N and that the sample is of size n < N.

Random sampling is the process of selecting n elements from a
population where each of the n elements has the same probability
of being selected, namely 71‘- More precisely, the random variables
X, Xo, o0, X, form a random sample of size n from a population
with a pdf f(z) il X, Xo,..., Xy are mutually independent random
variables such that the marginal pdf of each X; is f(2). The statement
“X1. Xo,. ... X, are independent and identically distributed, (i.i.d.),
random variables with pdf f(2)” is often used to denote a random
sample. The objective of random sampling is to obtain a representative
sample of the population that can be used to make generalizations
about the population.
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6.1.1 Simple Random Sampling

Simple random sampling is the most elementary form of sampling.
In a simple random sample, each particular sample of size n has
the same probability of occurring. In finite populations, each of
the (;\;) samples of size n are taken withoul replacement and have
the same probability of occurring. If the population being sampled
is infinite, the distinction between sampling with replacement and
sampling without replacement becomes moot. That is; in an infinite
population, the probability of selecting a given element is the same
whether sampling is done with or without replacement. Conceptually,
the population can be thought of as balls in an urn, a fixed number
of which are randomly selected without replacement for the sample.
Most sampling is done without replacement due to its ease and increased
efficiency in terms of variability compared to sampling with replacement.
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SAMPLING A SINGLE POPULATION

* Sampling Techniques

— Simple Random Sample (SRS): every member of the population has an
equal chance of being selected.

Sample

Population

+ Simple Random Sample
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Example 6.3 A teacher wants an algorithm that will randomly
select 5 students from a large lecture section of 180 students to present
their work at the board.

Solution: Assume the students in the class are numbered from 1
to 180 according to the class roll and that the students know their
numbers, Then an unbiased procedure for selecting 5 students starts
with using the following S code to determine which students should
be in the sample.

> sample(1:180, 5, replace=F)
[1] 138 52 135 58 160
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Example 6.4 Randomly select 5 people from a group of 20 where
the individuals are labeled from 1 to 20 and the individuals labeled
19 and 20 are 4 times more likely to be selected than the individuals
labeled 1 through 18.

Solution: An unbiased procedure to select 5 people starts with
using the following S code to determine which people will be in the
sample.

> sample(x=(1:20),size=5,prob=c(rep(1/26,18) ,rep(4/26,2))
[1] 20 19 1 17 16

9/30/2019
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6.1.2 Stratified Sampling

Simple random sampling gives samples that closely follow the population
of interest provided the individual elements of the population of interest
are relatively homogeneous with respect to the characteristics of interest
in the study. When the population of interest is not homogeneous
with respect to the characteristics under study, a possible solution
might be to use stratified sampling.

Stratified sampling is most commonly used when the population
of interest can be easily partitioned into subpopulations or strata.
The strata are chosen to divide the population into nonoverlapping,
homogeneous regions. Then, the researcher takes simple random
samples from each region or group. When using stratified sampling, it
is crucial to select strata that are as homogeneous as possible within
strata and as heterogeneous as possible between strata. For example,

1.In a study of the eating habits of a certain species, geographical
areas often form natural strata.

2. In a study of political affiliation, gender often forms natural strata.
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SAMPLING A SINGLE POPULATION

e Sampling Techniques

- Stratified Random Sample: Divide the sample into several strata. Then take
a SRS from each stratum.

Population

* Advantage: Each stratum is guaranteed to be randomly sampled

« Example: Obtain a list of all SSN for individuals in the U.S. who are over 65.
Divide up the SSNs into region of the country (time zones). Then randomly
sample 30 from each time zone.

Q
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6.1.3 Systematic Sampling

Systematic sampling is used when the researcher is in possession
of a list that contains all N members of a given population and desires
to select every k™ value in the master list. This type of sampling is
often used to reduce costs since one only needs to select the initial
starting point at random. That is, after the starting point is selected,
the remaining values to be sampled are automatically specified.

To obtain a systematic sample, choose a sample size n and let k&
be the closest integer to % Next, find a random integer i between
1 and k to be the starting point for sampling. Then, the sample is
composed of the units numbered i, i+ k,i+2k,...,i+(n—1)k. For
example, suppose a systematic sample is desired where 1 in & = 100
members is chosen from a list containing 1000 members. That is,
every 100'" member of the list is to be sampled. To pick the initial
starting point, select a number at random between 1 and 100. If the
random number generated is 53, then the researcher simply samples
the values numbered 53,153,253, ...,953 from the master list. The
following S code generates the locations to be sampled using a 1 in
100 systematic sampling strategy.

> seq(sample(1:100,1), 1000, 100)
[1] 53 153 253 353 453 553 653 753 853 953
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6.1.4 Cluster Sampling Cluster sampling does not require
a list of all of the units in the population like systematic sampling
does. Rather, it takes units and groups them together to form clusters
of several units. In contrast to stratified sampling, clusters should
he as heterogeneous as possible within clusters and as homogeneous
as possible between clusters. The main dilference between cluster
sampling and stratified sampling is that in cluster sampling, the
cluster is treated as the sampling unit and analysis is done on a
population of clusters. In one-step cluster sampling, all elements are
selected in the chosen clusters. In stratified sampling, the analysis
is done on elements within strata. The main objective of cluster
sampling is to reduce costs by increasing sampling efficiency. Examples
of cluster sampling include:

1. Houses in block
2. Students in school

3. Farmers in counties

1]
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SAMPLING A SINGLE POPULATION

e Sampling Techniques

- Cluster Sample: Divide the sample into several strata or clusters. Then take a SRS of
clusters.

- Sample

Population
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6.2 Parameters

e Once a sample is taken, the primary objective becomes to extract
the maximum and most precise information as possible about the
population from the sample.

e Specifically, the researcher is interested in learning as much as
possible about the population’s parameters.

e A parameter, 6, is a function of the probability distribution F.

e That is, 6 = ((F'), where {(-) denotes the function applied to F.
Each € is obtained by applying some numerical procedure £(-) to
the probability distribution function F'.

e Although I has been used to denote the cdf exclusively until now, a
more general definition of F is any description of X's probabilities.
Note that the cdf, P(X < z), is included in this more general
definition.

e Parameters are treated as constants in classical statistics and as
random variables in Bayesian statistics. In everything that follows,
parameters are treated as constants.

9/30/2019
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INFERENCE OVERVIEW

* We use sample statistics to make inference about population

parameters
Population Sample

Mean: y7; X
Standard Deviation: (o} S
Proportion: V4 s

14
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Example 6.7 Suppose F' is the exponential distribution, ¥ =
Exp(N), and ¢(F) = Ep(X) = 6. Express 6 in terms of A.
1

Solution: Here, (-} is the expected value of X, so0 8 = 3

6.2.1 Infinite Populations’ Parameters
The most commonly estimated parameters are the mean (u), the

variance (o), and the proportion (7). What follows is a brief review

of their definitions.

Population mean — The mean is defined as the expected value
of the random variable X.

e [ X is a discrete random variable,

py = E[X = Z 2 P(X = x;), where P(X = x;) is the pdf of X,
=1
e [[ X is a continuous random variable,

py = E[X] = / xf(x)dr, where f(x) is the pdf of X.

—00

9/30/2019



MARQUETTH
UNIVERSITY

Be The Difference.
Population variance — The population variance is defined as

var[X] =E [(X — p)?].

e For the discrete case

o0 o0
a%[— = var[X] = Z(_:z:.,; — ) P(X =) = Z .ZE;') P(X = ;) — 1
i=1 i=1
e For the continuous case
20
¢ ¢ w ¢ v
O‘%( =var[X] = / (@ — p)* f(x)de = ] 2 f(x) dx — pi°.
—00
—00

Population proportion — The population proportion 7 is the
ratio

where N7 is the number of values that fulfill a particular condition
and NN is the size of the population.

1
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Population
Parameter Formula Explanation
N
Py Xi
Mear i=1-1%
ean 17, N
Total T = ZLI Xi= Npy
Y Where Y is the number of elements
Proportion Ty ~ of the population that fulfill a certain
: characteristic.
The Y;s take on a value of 1 if they
Proportion 3. Y represent a certain characteristic and
alternate Tf= "N 0 if they do not possess the charac-
N I
teristic.
N 2
2 Zi—l(xr'*n”[)
ohy = SE
Variance(N) [N
=5 2 X ()
=1
.
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6.3 Estimators
e Population parameters are generally unknown.

e Consequently, one of the first tasks is to estimate the unknown
parameters using sample data. Estimates of the unknown parameters
are computed with estimators or statistics.

e An estimator is a function of the sample, while an estimate (a
number) is the realized value of an estimator that is obtained when
a sample is actually taken.

e Given a random sample, { X1, Xo,..., X} = X, from a probability
distribution F, a statistic, any function of the sample, is denoted
as T = t(X).

e Note that the estimator T of 6 will at times also be denoted 6.

e Since a statistic is a function of the random variables X, it follows
that statistics are also random variables.

e The specific value of a statistic can only be known after a sample
has been taken.

MARQUETTH
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e The resulting number, computed from a statistic, is called an estimate,
e [or example, the arithmetic mean of a sample
n i
i1 Vi
n ’
is a statistic (estimator) constructed from a random sample.

T=1X)=X= (6.1)

o Until a sample is taken, the value of the statistic (the estimate) is
unknown. Suppose a random sample has been taken that contains
the following values: x = {3,5,6,1,2,7}.

e It follows that the value of the statistic T = {(X) where ¢(X) is
defined in (6.1) is ¢ = ¢(x) = SHOLLZT — 4,
) = XXX,

e The quantity (X =r—is also a statistic; however, it does not

have the same properties as the arithmetic mean defined in (6.1).

e The essential distinction between parameters and estimators is that
a parameter is a constant in classical statistics while an estimator is
a random variable, since its value changes from sample to sample.

e Parameters are typically designated with lower case Greek letters,
while estimators are typically denoted with lower case Latin letters.

19
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e At times, it is also common to denote an estimator by placing a
hat over a parameter such as 3
e Some common parameters and their corresponding estimators are
provided in Table 6.1.

Table fi.1: Parameters and their corresponding estimators

Estimator Estimator
Parameter Name (Latin notation) | (Hat notation)
I population mean X sample mean ji
a? population variance | S* sample variance a?

6.3.1 Empirical Probability Distribution Function
The empirical probability distribution function, epdf = I,
is defined as the discrete distribution that puts probability 71; on each
value in x, where x is a sample of size n extracted from F'. The
empirical cumulative distribution function, ecdf, is defined

as

n

Fn(t) =Y Iz < t}/n. (6.2)
i=1

Here, I'{z; < t} is the indicator function that returns a value of 1
when z; < ¢ and 0 when z; > (.

2
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Example 6.8 Simulate rolling a die 100 times and compute the
epdf. Graph the ecdf
Solution: The R code to solve the problem is:
> rolls <- sample(1:6,100, replace=TRUE)
> table(rolls)
rolls
1 2 3 4 5 6
22 18 12 16 15 17
> table(rolls)/100 # epdf
rolls
1 2 3 4 5 6
0.22 0.18 0.12 0.16 0.15 0.17
> plot(ecdf (rolls))
27
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where the output following table (rolls) /100 is the empirical distributi
function. The graph of the realized ecdf is found in Figure 6.1 on the facing

ecdfirolls)
2 omeeees
= —
o
—
o
S —
£
3 —_
o —
E
I R
T T T T T T T
o 1 2 3 4 5 [}

Figure 6.1: Empirical cumulative distribution function of rolling a die 100 times M
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6.3.2 Plug-in Principle

The plug-in principle is an intuitive method of estimating parameters
from samples. The plug-in estimator of a parameter ¢ = {(F) is
defined to be § = f(F) Simply put, the estimate is the result of
applying the function £(+) to the empirical probability distribution r.

Example 6.9 What are the plug-in estimators of (a) expected
value and (b) variance of a discrete distribution 7
Solution: The answers are:

(a) When the expected value is = Fp(X), the plug-in estimator of
the expected value is
n
) 1 —
0= EAX)= X —=X
i=1
(b) When the variance is 8 = varp(X) = Ep(X — )2, the plug in
estimator of the variance of X is
n
5 v T2 =2 |
f=Ex(X—X) =) (X;—X) = .
=1

9/30/2019
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6.4 Sampling Distribution of X

e Suppose 10 college students are randomly selected from the population
of college students in the state of Colorado and compute the mean
age of the sampled students.

e [f this process were repeated three times, it is unlikely any of the
computed sample means would be identical.

e Likewise, it is not likely that any of the three computed sample
means would be exactly equal to the population mean.

e However, these sample means are typically used to estimate the
unknown population mean.

e S0, how can the accuracy of the sampled value be assessed?

24
MARQUETTH
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EXAMPLE - ROLLING A PAIR OF DICE g The Diference.
* Roll adie. Let x = the number we see. The distribution of x:
0204
* Roll two dice, say x4, x, o1ed
- What is the distribution of ¥ = 1;'x2 ? £ 010
B 005
0.00 T T T T T T
- 1 2 3 4 5 [}
1/ * How about three dice?
36 -+ distribution of ¥ = 111124%s
2/36 020
el
4 0.05
/36 000 .‘QTTTII ITTT?,’
5/36 1 2 3 ) 4 5 ]
* The distributi 35| bz Mowaboutlouidicet | .
020 4 5/36 4
0.15 o 4, ;:
g{ 010 I 5 3/ E p1g
vl
- T T T T T 55| 25 0w 1..o!ﬁ'l’ﬂ Hin TTI!...
X 6 1/36 X 25
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EXAMPLE 2 - CREATING A SAMPLING Se The Dilrence.
DISTRIBUTION OF SAMPLE MEANS

¢ Let’s consider a population that consists of five equally likely
integers: 1, 2, 3, 4, and 5. P=02,forx=1,2,3,4,5

Pl
0.20

¢ Randomly choose 30 samples

. . .
of size 5 from this population. 010
o=141
No. Sample No. Sample [ %
1 4,5,1,4,5]13.8 16 4,5,5,3,5]14.4
Lk_fa_“,y 3.22]| 17 3.3.1.2,1|2.9] 0.00
3 2,5.1,5,112.8 18 2,1,3,2,2] 2.0 : T T T T T
4 4,3,3,1,112.4]| 19 4,3,4,2,1|2.8 L 2 3 4 5
5 1,2,5,2,4]2.8]| 20 5,3,1,4,2|3.0|
6 4,2,2,54]|3.4]| 21 4,4,2,2,5]|3.4 The Population: Theoretical Probability Distribution
7 1,4,55.2]|3.4]| 22 3,3,5,3,5|3.8|
8 4,5,3,1,213.0]| 23 3,4,4,2,2| 3.0
9 5,3,3,3,5|3.8 24 3,3,4,5,3]| 3.4 Somples of Size §
10 5,2,1,1,2|2.2)| 25 5.1,5,2,3]3.2
11 2,1,4,1,3|2.2|| 26 3,3,3,52]3.2 1
12 5,4,3,1,112.8 27 3,4,4,4,4|3.8 54
13 1,3,1,5,5]13.0}| 28 2,3,2,4,1|2.4
14 3,4,5,1,1|2.8]| 29 2,1,1,2,4]|2.0 B ®=2.98
15 3,1,5,3,112.6 30 5,3,3,2,5|3.6 g %
T T gg_ s=0.638
&,
1
0

18 22 26 30 34 38 42 46
Sample mean

Frequency Distribution of Sample 26

Means
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EXAMPLE 2 - CREATING A SAMPLING Se The Dilrencs.
DISTRIBUTION OF SAMPLE MEANS

Pl)=02, forx=1,2,3,4,5 No. Somple  x x
Pl 1 2514538 2
0.20 2 11351 2.2 o
3 2515128 o
4 4331124 8
5 1252428 o
6 4225434 4
,,;’,:&~ 7 1455234 8
0.10 8 4531.230 o
u=3.0 9 5333538 6
o=1.41 10 52,112 22 2
11 21.41322 2
12 5431128 8
13 131,55 3.0 4
o 14 3451128 o
T T 15 31,531 26 6
1 2 3 4 5
x
us)
e
30

Somples of Size 5

x=298
= 0638

Frquency
o =N w Ao

18 22 26 30 34 38 42 46
Somple meon

* Looks like, under certain assumptions, the Sampling
distribution of the sample mean approaches the normal
distribution. (Sampling distribution applet)

27
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e To assess the accuracy of a value (estimate) returned from a statistic,
the probability distribution of the statistic of interest is used to
place probabilistic bounds on the sampling error.

e The probability distribution associated with all of the possible
values a statistic can assume is called the sampling distribution
of the statistic.

e This section presents the sampling distribution of the sample mean.
Before discussing the sampling distribution of X, the mean and
variance of X for any random variable X are highlighted.

ol X is a random variable with mean g and variance o= and il

a random sample Xy,..., X, is taken, the expected value and
variance of X are written

E[X] = pux=p. (6.3)
0.2
v 2
var [X] =0y =— (6.4)
‘ n
2!
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6.5 Sampling Distribution for a Statistic from an Infinite

Population

e Consider a population from which & random samples, each of size
n, are taken. In general, il given k& samples, & different values for
the sample mean will result.

e If i is very large, theoretically infinite, the values of the means from
each of the samples, denoted X for each sample i, will be random
variables with a resulting distribution referred to as the sampling
distribution of the sample mean.

e The sampling distribution of a statistic, £(X), is the resulting
probability distribution for ¢(X') calculated by taking an infinite
number of random samples of size n.

e T'he resulting sampling distribution will typically not coincide with
the distribution of the parent population.

29
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6.5.1 Sampling Distribution for the Sample Mean

6.5.1.1 First Case: Sampling Distribution of X when
Sampling from a Normal Distribution

e When sampling from a normal distribution, the resulting sampling
distribution for the sample mean is also a normal distribution.

o This is an immediate result of Theorem5.1 on page 176. That is, X

is a linear combination of the X;s where a; = 7—11

e As observed earlier, the mean and the variance of the sampling
. . - 9 .
distribution of X are p and o“/n regardless of the underlying

population.
e 50, the mean and variance of the sampling distribution of X are
always knowr.

e However, it is not always true that the resulting sampling distribution
of X is known.

olf X ~ N(u,o)then X ~ N(;L._%).

w
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Example 6.11 [f X ~ N(p,12), find the required sample size to
guarantee | X — p| < 3 with a probability of 0.95.

Solution: Changing the prose into mathematical statement,
P(|X—p|<3)=095

needs to be solved.

Since X ~ N(p, o = 12), it follows that

- 12
X~N (,u,crxzi:—).

POX—M )
< 1.96 ) = 0.95.

Consequently,

a/\/n

Multiplying both sides by %

v

and substituting 12 for o gives

3

9/30/2019
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- 12 _
P (‘X — ,ul < (l.gﬁ)ﬁ) = 0.95.

4 e 19 . . . . .
Next, set (l.S)b)l—fn = 3, and solve for n. By multiplying both sides
by v/n, dividing both sides by 3, and finally squaring both sides, gives
n = 61.47. Consequently, a sample size ol at least 62 is needed to
X— ,u| < 3 with a probability of 0.95. =

guarantee

3
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6.5.1.2 Second Case: Sampling Distribution of X when X is not a
Normal Random Variable

When the underlying population of X is not normal, provided the
sample size is sufficiently large, the sampling distribution of X is
still normal. Specifically, the central limit theorem states that

X—u

/n
as n — oo is the standard normal distribution. Expressed in lay
terms, the sampling distribution of X, regardless of the underlying
population, is approximately N (p1, 0 /+/n ) provided n is sufficiently
large. Populations that are asymmetric require larger values of n
compared to symmetric populations before the sampling distribution

of X appears normal.

Sampling applet

Sketch of Proof Series expansion of “In(1 + x)”
that is needed for the proof

9/30/2019
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EXAMPLE: VACCINE FOR HIV B0 e Ditrece.

* On the average, HIV patients survive for 5 years after
being diagnosed. A new vaccine is developed to fight
the virus. In a clinical trial, 50 HIV patients were given
this vaccine, and the average survival years for this
sample was more than 5.6 years. Compute the
probability that the sample average is more than 5.6
years assuming the population mean of 5 years and
the population standard deviation of 0.6.

Y ~ N(5,0.6//50 = 0.085)
e P(Y > 5.6) =1 —pnorm(5.6,5.0,0.085)
e P(Y > 5.6) =8.3955% 10713

* What does this imply?

34
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6.5.2 Sampling Distribution for X —Y when Sampling
from Two Independent Normal Populations

The sampling distribution for X — ¥ is normal with mean gy —

7Y where ny and ny are the
Iy x and ny are t

52
oy

fty, and standard deviation

respective sample sizes. That is

X— Y ~ N Hx — Ky,

provided X and Y are independent random variables where X ~
N(px,ox)and Y ~ N(uy,oy). Since X and Y are independent
normal random variables, the distributions of their means are known.

Specifically,

X~N (,u.x, 7X ) and Y~ N (,uy, \;}_) .
VI X Ty

9/30/2019
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Example 6.15 > Simulating X —Y < Use simulation to
verify empirically that if X ~ N(uy,0x) and Y ~ N(uy,oy)
the resulting sampling distribution of X — Y is as given in (6.5).
Specifically, generate and store in a vector named meansX the means
of 1000 samples of size ny = 100 from a normal distribution with

px = 100 and ox = 10. Generate and store in a vector named
meansY the means of 1000 samples of size ny = 81 from a normal
distribution with gy = 50 and oy = 9. Produce a probability

histogram of the differences between meansX and meansY, and superimpos
the probability histogram with a normal density having mean and
standard deviation equal to the theoretical mean and standard deviation
for (Y —}_’) in this problem. Compute the mean and standard
deviation for the difference between meansX and meansY. Finally,
compute the empirical probability P (X —-Y < 52) based on the simulated
data as well as the theoretical probability P (X’ ~-Y < 52).

3
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Solution: In the S code that follows, m represents the number of
samples, nx, mux, sigx, ny, muy, sigy, muxy, meansX, meansY,
and XY represent ny, pix, ox. ny, py, oy, px — py, X, Y,
and X — Y respectively. The set.seed() command is used so
the same values can be generated at a later date. Before running
the simulation, note that the theoretical distribution (X — ?) ~
N (1[}0 — 50 = 50, \/ 10%/100 + 92/81 = \/5) The probability histogran
for the empirical distribution of (X —Y') isshown in Figure 6.2 on page 8]
Note that the empirical mean and standard deviation for (X - ?)

are 50.02 and 1.42 respectively, which are very close to the theoretical

values of 50 and v/2 = 1.41. The empirical probability (X ~-Y < 52)
is computed by determining the proportion of (E - }_l values that

are less than 52. Note that the empirical answer for P (X —-Y < FJL)

is 0.92, which is in agreement with the theoretical answer to two

decimal places.
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hist (XY, prob = T, xlab = "xbar-ybar", nclass = "scott",
col="cyan", xlim = c(1l1, ul), ylim = c(0, 0.3))
lines(seq(1ll, ul, 0.05),dnorm(seq(ll,ul,0.05),muxy,sigxy),
col=1l, 1lwd=2)

Y

MARQUETTH
R CODE: et
» set.seed(17)
» m <- 1000
» nx <- 100; ny <- 81
» mux <- 100; sigx <- 10
» muy <- 50; sigy <- 9
» muxy <- mux - muy
» sigxy <- sqgrt((sigx”2/nx) + (sigy”~2/ny))
» meansX <- array(0, m) # Array of m zeros
» meansY <- array (0, m) # Array of m zeros
» for(i in 1:m) {meansX[i] <- mean (rnorm(nx, mux, sigx))}
» for(i in 1:m) {meansY[i] <- mean (rnorm(ny, muy, sigy))}
» XY <- meansX - meansY
» 11 <- muxy - 3.4 * sigxy
» ul <- muxy + 3.4 * sigxy
>

w

MARQUETTH
UNIVERSITY
R CODE (CON’T) . Be The Difference.
» print (round(c (mean (XY), sqgrt(var (XY))), 2))
[1] 50.02 1.42
» sum (XY < 52)/1000
[1] 0.92
» round (pnorm (52, 50, sqrt(2)), 2)
[1] 0.92
3
8
2
- “ < s: - = M
Figure 6.2: Probability histogram for simulated distribution of [,T - ?) with superimposed normal density with g = 50, and & = V2.
|
3C
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6.5.3 Sampling Distribution for the Sample Proportion
When Y is a binomial random variable, Y ~ Bin(n, 7), that represents
the number of snceesses obtained in n trials where the probability of
suceess is 7, the sample proportion of successes is typically computed

as y
P=— (6.6)
n
The mean and variance respectively of the sample proportion of successes
are
EP=pup=m (6.7)
and e
‘ ™ — T
var[P] = Uj)j = —} (6.8)
n

FEquations (6.7} and (6.8) are easily derivable using the mean and
variance of Y since

4
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ElY]=nn and var]Y] = nn(l —7),
it follows that
Y |
EP|=FE [—] =—EY] =,
n n
and
9 : g 1 Low(l=m)
op = var|P| = var |—| = —varlY] = ——.
P (7] L'] n? Y] n
The central limit theorem tells us that the proportion of successes
is asymptotically normal for sufficiently large values of n. So that the
distribution of P is not overly skewed, both nm and n(1 — ) must be
greater than or equal to 5. The larger nm and n(1 — ) are, the closer
the distribution of P comes to resembling a normal distribution. The
rationale for applying the central limit theorem to the proportion of
successes rests on the fact that the sample proportion can also be
Normal Approximation to Binomial Applet
41
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thought of as a sample mean. Specifically,

CTE NP, U

pP— 1 fl’
n

where each Y; value takes on a value of 1 if the element possesses the
particular attribute being studied and a 0 if it does not. That is, P
is the sample mean for the Bernoulli random variable Y;. Viewed in
this fashion, write

72T N, (6.9)

fm(l—m)
n

[t is also fairly common to approximate the sampling distribution of
Y with a normal distribution using the relationship
Y —nnr
Z=——"" < N(0,1). (6.10)
nr(l —m)

42
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Example 6.16 In plain variety M&M candies, the percentage of
green candies is 10%. Suppose a large bag of M&M candies contains
500 candies. What is the probability there will be

(a) at least 11% green M&Ms?

(b) no more than 12% green M&Ms?

Solution: First, note that the population proportion of green M&Ms
is 7 = 0.10. Since neither n x 7 = 500 x 0.10 =50 norn x (1 —7) =
500 x 0.90 = 450 is less than 5, it seems reasonable to appeal
to the central limit theorem for the approximate distribution of P.

Consequently,
m(l—m
PR N(ﬁ, ¥) :
n

which when using the numbers from the problem becomes

(0.10)(0.90)

~ N 0.10,
F (0 10 500

= 0.01341641) .

9/30/2019
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If the random variable Y is equal to the number of green M&Ms, then
the distribution of ¥ can be approximated by

Y ~ N(mr. nw(l —m7) ) .

which when using the numbers from the problem becomes

Y < N(ao, V/3500-0.10 - (1 —0.10) = 6.708204) .

[t is also possible to give the exact distribution of ¥ which is ¥V ~

Bin(n = 500, 7 = 0.10).

44
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(a) The probabilities that at least 11% of the candies will be green
Mé&Ms using the approximate distribution of P, the approximate
distribution of Y, and finally using the exact distribution of ¥ are

0.11 — 0.1 — 0.10
u»(on.n—u» ”_ Nap(z >
gp 0.01341641

Z 0.745356) = 0.2280283

— 5o — 55— 5
nw 55 — nw - ]P’(Z > Ji a0 )
vnr(l—7) \/mr 1— 6.708204

P(Z > 0.745356) = 0.2280283

|V
“
H

500 500
(Y > 55) =) ( )(0 10)/(0.90)°" % = 0.2476933
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(b) The probability that no more than 12% of the candies will be
green M&Ms is

P—n _012—7 0.12 - 0.10
PP <012) =P < =Pl < —
(P <012) (ap =" op ) ( _0.01341641)

=P(Z < 1.490712) = 0.9319814

Y —nmw 60 — nm 60 — 50
P(Y <60) =P > ~P| < —
(=) (\/mr(l —7)  nr(l— 71')) ( - 6.708204)

= P(Z < 1.490712) = 0.9319814

60 .
r < 500 i 500 -
(Y <60) = ( _ )(0.10) (0.90) — 0.9381745.
t=0 !
4
MARQUETTH
R CODE: F
The following S commands compute the answers for (a) and (b).
» 1 - pnorm(0.11,0.10,sgrt(0.1*0.9/500))
[1] 0.2280283
» 1 - pnorm(55,500*0.1,sqrt (500%0.1*0.9))
[1] 0.2280283
» 1 - pbinom(54,500,0.10)
[1] 0.2476933
» pnorm(0.12,0.10,sgrt(0.1*0.9/500))
[1] 0.9319814
» pnorm(60,500%.10,sgrt (500*%0.1*0.9))
[1] 0.9319814
» pbinom(60,500,0.1)
[1] 0.9381745
The astute observer will notice that the approximations are not equal
to the exact answers. This is due to the fact that a continuous
distribution has been used to approximate a discrete distribution.
.
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The accuracy of the answers can be improved by applying what is
called a continuity correction. Using the continuity correction,

(6.9) and (6.10) become

P+l _ g
Z-2=0 " L N@©,1) (6.11)
m(1-m)
n
and
Y£05—n
7 =22 L N0, 1), (6.12)
nr(l —m)

Normal Approximation to Binomial Applet

When solving less than or equal type inequalities, add the continuity
correction; and when solving greater than or equal type inequalities,
subtract the continuity correction. Notice how much closer the approximat
are to the exact answers when the appropriate continuity corrections

are applied.

it
MARQUETTH
LTNI\’gRSlT\'
P-38_7 o011-38-
PP > 0.11) = 1[”( 500 — T > 500 T
(’7/) 0’/;
0.11 — &2 — 0.10
~P|Z > W—' ,
0.01341641
= P(Z > 0.6708204) = 0.2511675
B(Y > 55) = P Y -05—nn N 55 —0.5—nm
nm(l — ) nm(l — m)
sz 55 .__U':? — 50
6.708204
= P(Z > 0.6708204) = 0.2511675
<& /500 A -
P(Y > 55) = (,)«ummuwﬂ“ﬂ_uzmmm
=55 !
19
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P+“,(’, T () l~+('—’—7r
P(P<0.12) =P
('7/)
1>—"’—()1()
~P|Z g 500
0.01341641
=P(Z < 15248) = 0.9412376
Y +0.5— 60 + 0.5 —
)<()( i r1'r>)+ ) — Nm
vnr(l—m) vnr(l —m)
60 + 0.5 — 50
el ) 5—5
6.708204
=P(Z < 1.565248) = 0.9412376
% 500
) 5 .
P(Y < 60) = < )() 10)/(0.90)°%9~% = 0.9381745
=0
5
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6.5.4 Expected Value and Variance of the Uncorrected
Sample Variance and the Sample Variance

Given a random sample X1, Xq,..., X}, taken from a population
with mean g and variance o2, the expected value of the uncorrected
variance, Sﬁ is

. 1 .,
2 . o &
E {su] . ngE [(AL X) } . (6.13)
* Note that
¢ SZ=-YR (X, —X)? and §Z=—3" (X; - X)?

e Therefore:

B =gy B = %07 = T s3]

51
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Expanding the right hand side of (6.13) gives
n n

Z(Xi—)?)zzzux?:_m_'_ (p-—)?)]z

=1 =1
_ Z [(Xi—mhz(#—X)( =)+ (u —A)z]

T
*ZX ,u— ZA*H)JFT?(H—Y
1=1
—ZX—,U
_Z = ) (1 — X) +n(,u—f)2

—Z i — 1) —n ,u—)?)g.

)’

2(p—X) (nX —np) ~n(p— X)z

57
MARQUETTH
bt e
e Rememberthat: S2 = %Z?zl(Xi - X)?
Substituting 7 | (X;—p)?—n (p — X ) for >0 (X —X')z
in (6.13) gives
e 1 n ’ , .
E _S_.u_ = EE Z(}ii —p)—np—X)
i=1
Els?] = : no’ — naz
A B n (6.15)
C 2
E Si =0’ ——
74 n
5 (n - 1)
=0 .
n
]
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As (6.15) shows, the expected value of Sg;., o (%) is less than o2

However, as n increases this difference diminishes. The variance for

. . .
the uncorrected variance Sj;, is given by

L3 20— 2p3) | pa— 33
,):| _ Ji4 ﬂlz_ (Ju_l J[L2)+‘[LJ‘ ' #2_ (616)

var {S{L 5

n n= Tl'3

where p, = E [(X - ,u)k] is the k™ central moment. Using the
definition for the sample variance from (6.2), the expected value of
52 is readily verified to be 2.

The probability distributions for Si and S2 are typically skewed
to the right. The skewness diminishes as n increases. Of course,
the central limit theorem indicates that the distributions of both
are asymptotically normal. However, the convergence to a normal
distribution is very slow and requires a very large n. The distributions
of Sﬁ and S? are extremely important in statistical inference. Two
special cases examined next are the sampling distributions of bﬁ and
S2 when sampling from normal populations.

54
MARQUETTH
UNIVEARSITY
6.6 Sampling Distributions Associated with the Normal
Distribution
» Sampling applet
6.6.1 Chi-Square Distribution (x*) The chi-square distribution
is a special case of the gamma distribution covered in Section 4.3.3.
In a paper published in 1900, Karl Pearson popularized the use of the
chi-square distribution to measure goodness-of-fit. The pdf, E(X),
var(X'), and the mgf for a chi-square random variable are given in
Box (6.17), where I (§) is defined in 4.33.
e y2(n) isa special case of Gamma distribution: Gamma(g, 2)
* Gamma Distribution
* Chi-squared distribution
o

9/30/2019

28


http://www.mssc.mu.edu/~mehdi/applets/sample_dist/index.html
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution

MARQUETTH
UNIVERSITY
Chi-Square Distribution X ~ \,‘),
1 n_q & ..
——s w2 e 2 ifz2>0
flz)y=<¢T(5)22
0 ifx<0 ((j.]?)

E[X]=n

var[X] = 2n

Mx@®) = (1—2t)"Z for t <

| —

The chi-square distribution is strictly dependent on the parameter,
n, called the degrees of freedom. In general, the chi-square
distribution is unimodal and skewed to the right. Three different
chi-square distributions are represented in Figure 6.3 on page 112.

I‘(g) Zfo X2 1e=Xdy

5
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The notation used with the chi-square distribution to indicate o of
the distribution is in the left tail when the distribution has n degrees
of freedom is 'Xé;n. For example, \ﬁgg 10 denotes the value such that
95% of the area is to the left of said value in a X%U distribution.
To find the value corresponding to X%.%;los use the S command
qchisq(p,df) where p is the area to the left, (probability) and df is
the degrees of freedom. The command
> qchisq(.95,10)
[1] 18.30704

RO} ) 2 . K
which says that P(x7, < 18.31) = 0.95

1) 5 0 15 20 25 30 35

Figure 6.3 Mhsstrations of the POF of 42, 52, and 3, random variables

57
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Asymptotic properties. For large values of n (n > 100), the
distribution of 1/2x% has an approximate normal distribution with
a mean of v/2n — 1 and a standard deviation of 1. In other words,

because /23 ~ N(v2n —1,1), Y = /2x2—/2n — 1 ~ N(0,1).
For very large values of n, the approximation

2
Xp— "N
van

Y = ~ N(0,1)

may also be used.

Example 6.18 Compute the indicated quantities:
(a) P(xTsg = 19(;)
(b) P(40 < \ < 50)
(c) Ip( \'i).) > 2()( )
(d) Find the value a such that H”(\m <a)=0.06

MARQUETTH
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Be The Difference.

Solution: The answers are computed first by hand using the approxima

V2X2 ~ N(y/2n —1,1). Then, the exact probabilities are calculated

(a) P(xis5y = 126) = P(y/2x359 — V299 > /2(126) — V299) ~
P(Z > —1.42) = 0.922.

> 1 - pchisq(126,150)

[1] 0.923393

(b)
P40 < x§5 < 50) = P(1/2(40) < \/2x3; < 1/2(50))
= P(VR0 — V129 < /2x2; — V129 < V100 — V129
P(—2.41 < Z < —1.36) = 0.079.

> pchisq(50,65) - pchisq(40,65)
[1] 0.07861696

59
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()

B(xh > 260) = B(y/2x%,, > V2 - 260)
= P( ~V20220) 12 V2260 — \/2(220) _ 1)
~ P(Z > 1.85) = 0.032.

o Lo
-~

oo | BOBD
] [N
o

A%

~

> 1 - pchisq(260,220)
[1] 0.03335803

(d) P(x300 < a) = 0.6
P (\/2;51200 — /2(100) — 1 < v2a — 1/2(100) — 1) =0.6

P (Z < V/3a — \/2(100) — 1) — 06
0.2533 = v2a — V199
= q = 103.106.

> qchisq(.6,100)
[1] 102.9459

Note that the approximations are close to the answers from S, but

they are not exactly equal. n 5
MARQUETTH
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6.6.1.1 The Relationship Between the y” Distribution
and the Normal Distribution

In addition to describing the y2 distribution as a special case of the
gamma distribution, the ,\'2 distribution can be defined as the sum of
independent squared standard normal random variables. If n is the
number of summed independent squared standard normal random
variables, then the resulting distribution is a y* distribution with n
degrees of freedom, written \,‘)J That is,

T
Xn=Y_Z}. Zj~N(.1) (6.18)
i=1

Theorem 6.1 If Z ~ N(0,1), then the random variable ¥ =
Z% ~ \T)

6]
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Theorem 6.1 If Z ~ N(0,1), then the random variable ¥ =
Z% ~ X%-

* Recall Leibniz integral rule:

al#)

al#)

b{6) B(6)
—( f(:«:,e)dx)z oS (,0) dz+ F(5(6).6)-H(6) — f(al6),0)-a'(0)

6
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* Taking the derivative of Fy (y) yields

which is the pdf for y?
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Change of Variable
Given a random variable x, with probability
distribution function 1, (x18), we often would
like to know the probability distribution of a
random variable y, that is a function y(x) of x,

y=y(x).

64
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Change of Variable

Let y=y(x) be a one-to-one transformation
with inverse transformation x=x(y) .

Then, if f, (x16) is the PDF of x, the PDF of y
can be found as

Ly 310 = fy (x(01O)x1J(x = y)|

dx(y)
dy

where J(x— y)=

Suppress PDF subscripts.

65
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Change of Variable
Uniform:

A random variable # has a continuous uniform distribution,
u~uniform(0,1) if
Su)

) 1 if uel0,1]
fu)= .
0 if uel01]
and
S |
llil 2 " ]2
D.B. Rowe
MARQUETTE
Change of Variable
Uniform:

We can generate 108 random uniform(0, 1) variates
and compare theoretical PDF to empirical histogram

i 1 if uel0,]1]
fu)= .
0 if uel01]
along with mean and variance

u=rand(10"6,1);
hist(u,100)
mean(u)

var(u)

9/30/2019
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Change of Variable
Uniform:
Theoretical Simulated
fay [ S D fw [
rr n‘ﬂlﬂ 0 0.2 0.4 06 0.8 1 l” 1
Ky 0.5 I 05003
Z 2
o, 0083 S7 0.0833
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Change of Variable
Uniform:

We can obtain a random variable x that has a general
uniform distribution in the interval a to b via the
transformation

x=Mb-au+a

The PDF of x can be obtained by
f(xla,b)= fux))x|J(wu—>x)l

where u(x) is u written in terms of x and J(*) is the Jacobian
of the transformation.

6¢
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Change of Variable
Uniform:

The original variable u in terms of the new variable is

b—a

and the Jacobian of the transformation is

J(u—>x)= du(x) = ! .
dx b—a
This yields
f(xla,by= f(u(x)x|J(u—x)|l=1x 1
—al-
D.B. Rowe
A RQVELLE

Change of Variable
Uniform:

A random variable x has a continuous uniform distribution,
x~uniform(a,b) if

| . fo |

if xelab 2

f(x)=<b-a [a.6]

0 if xe¢lab]

where, a,beR ,a<b.

Note that ¥=0 mapped to x=a
and #=1 mapped to x=b.

a 7\"
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Change of Variable
Uniform:

We can generate 108 random uniform(a,b) variates
and compare theoretical PDF to empirical histogram

f(.r){bla if xela,b]

0 if xé&la,b]
along with mean & variance by transforming random variates

a=1' b=2: 10° uniform variates
X_a:(b aj)*U‘ u=rand(1076,1);
hist(x,100)

mean(x), var(x)

MARQUETTH
UNIVERSITY
- |
Change of Variable a=1  _b+ta , (b-ay
Uniform: poo T2 TTTD
Theoretical Simulated
for[ - ] T

ba

M.o15 X 1.5003
o 0.083 s

[

=
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Change of Variable

Normal: The same process can be applied.

A random variable z has a standard normal distribution,
z~normal(0,1) if
o)
1 0.35
L

1
)= €
f ( ) JE , 03

where z € R and

u,=0 o =l.

MARQUETTH
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Change of Variable
Normal:

We can generate 10 random normal(0,1) variates
and compare theoretical PDF to empirical histogram

1

12
f(z):me -

along with mean and variance

z=randn(10"6,1);
hist(z,(-5:.1:5))
mean(z), var(z)
xlim([-5 5])

79
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Change of Variable
Normal:

Theoretical , Simulated

&~
¢

,u_; 0 7 9.4576x10
o, 1 s’ 0.9994
D.B. Rowe
MARQUETTH
.
Change of Variable
Normal:

We can obtain a random variable x that has a general
normal distribution with mean x and variance o2 via the
transformation

x=0z+ MU .
The PDF of x can be obtained by
f(xlu,0%)= f(zCNxI J(z > x)|

where z(x) is z written in terms of x and J(*) is the Jacobian
of the transformation.

77
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Change of Variable 1
Normal: f2)=

to]—
2]

e

9]

The original variable z in terms of the new variable is

z(x)= 7K
o
and the Jacobian of the transformation is
Jzop=tW_1
X o
This yields

_ifxay
Sl @,0%) = f(z(0)x1 T (2> x) 1= J;—Ef A7) X é‘

7
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Change of Variable
Normal:

A random variable x has a general normal distribution,
x~normal(y,c?) if

fx)

{ .\’*‘[l \
v

12| —

1 —
e
o271 ,

f(x|ﬂ,0'2):

where, x,ueR ,0<o.

Note that z=-» mapped to x=-»
and z=« mapped {0 x=«,

0
X

7¢
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Change of Variable
Normal:

We can generate 10° random normal(u,c?) variates
and compare theoretical PDF to empirical histogram

[ x—p)"
=)

| —

5 1
J(xlp,o7)= e
o2
along with mean & variance by transforming random variates
mu=5; 1 sigma=2; 108 standard normal variates

. w4 z=randn(10/6,1);
X=mu+sigma*z;
hist(x,(-5:.2:15) )
mean(x), var(x) , xlim([-5 15])

D.B. Rowe
MARQUETTH
Change of Variable 5
Normal: H=S o =4

Theoretical ‘ Simulated
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Change of Variable

This process can be used to find the distribution of more than
linear functions y=y(x) of random variables.

For example, let x~normal(u,c?).
o X—U
Assume we want to know the distribution of y= [—J .
(o)
We can determine f(y) through the transformation of

variable procedure.
Homework problem.
£,(10) = f k(WO T (x> 1< "

5]

CHANGE OF VARIABLE S
NOT ONE-TO-ONE e
Theorem 6.1 If Z ~ N(0,1), then the random variable ¥ =
7%~ \%

Let y=y(z) be a not one-to-one transformation,
(ie. y=22  then z,(y)=+y andz,(») ==y )

We can still perform the change of variable by
breaking up the transformation into pieces that are1-to-1.

1O10)= 31,10 d(”

y

e, £,(y16)= fz(\/_lé’)‘ S| fle)‘ f‘

1 W 1 1 _v»? 1
2

) =—=e 2 ><—+—e X —
WO = 25 Vm 2
1 1 1 y 1 Yy
=—X—=x-—=xe 2z = yA/D-1,73, y>0.m
2 ATy V2r(1/2)
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Theorem 6.1 If Z ~ N(0,1), then the random variable ¥ =
Z? ~ .Y‘E‘
X1

Corollary 6.11f X ~ N(u, o), then Z = Xf;ﬂ ~ N(0,1), and Z* ~

2
X7
Theorem 6.2 If X,..., X, are independent random variables
with chi-square distributions y2 Y2 respectively, then

vit 1 - Xing> - - - > Xin,. TOS v,

r /]
. ; 2
¥ = Z X;~ X5, Where s= Z n;.
* Proof:

My () = Ele] = | [Ele ) =] [Me,®
i=1 i=1

n; 1or .
= HT=1(1 - Zt)_7 = (1 — Zt)_EZizlnL

84
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One of the properties of y? distributions is that of reproducibility.
In other words, the sum of independent y? random variables is also
a x? distribution with degrees of freedom equal to the sum of the
degrees of freedom of each of the independent v2 random variables.

Corollary 6.21f X1, ..., X, are independent random variables following
a N(0, 1) distribution, then
n

Y =) X2~

i=1

Corollary 6.31f X,.....X,, are independent random variables with
N (s, 0;) distributions respectively, then
i) . 9
. (Xi —pi)” o
Y = Z : : — ~ Xn-

‘ a
=1

=D
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Example 6.19 Given 10 independent and identically distributed
(i.i.d.) random variables Y; where Y; ~ N(0,0 = 5) fori =1,...,10,
compute

L0
(a)p [ D V7 <600
i=1
| 0
.'2 I3 ol
(b) P m};hiﬂi“5
1=

(¢) The number a such that p

MARQUETTH
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Be The Difference.

Solution: The answers are computed using S. Be sure to note that

_Yi-0 Y
- 5 — I

(a)

10 10 2
. Yi\© _ 600
72 i
P E Y7 <600 =P E (—5> 5—25

— (X7, < 24) > 0.99.

Uangthesconnnandpchisq(24,10),gh@sP(xiJ5;24)::U£%Q3996

> pchisq(24,10)
[1] 0.9923996
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(b) 10 10
= ) =
! v:\2 _ 12.175(10
p[=S"v2>12175 | = (J> s pel L)
10 2 i 5 %5
=1 =

> 1 - pchisq(4.87,10)
[1] 0.8996911

(c)

Using the S command qchisq(), the value X%O,O.SO = 9.34 is calculated.

> qchisq(0.50;10)
[1] 9.341818

2 L ,
Consequently, l—(_}%— = 9.34, which vields a = 4.83. -
8
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Be The Difference.

6.6.1.2 Sampling Distribution for ;512, and 52 when Sampling
from Normal Populations

In this section, the resulting sampling distributions for Sg and 52
given in Table 6.2 on page 44 when sampling from a normal distribution
are considered. Note tlga.t (X — X)? =nS2 = (n—1)S% and
that dividing this by - yields

zn: (X,; — 2)2 nSz  (n—1)52
o2 o2 o a2

(6.19)
=1

The first term in (6.19) appears to be some type of standardized

normal random variable. However, it is not since the sample mean

of a random variable is itself a random variable and not a constant. So,
. . . . 2 e 3

what is the distribution then of n.S; /a*? Theorem 6.3 on the next page

tells us that the distribution of n.Sj; /o is x7 _;.

89
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Theorem 6.3 Let X,..., Xy, bearandom sample from a N (p, o)
distribution. Then,

— 9 . . . - 3 2
(1) X and S are independent random variables. Likewise, X and S;
are independent random variables.

(2) The random variable

—\ 2
nS2 (m-1s? <o (X —X)
oz o2 - Z o2 -

n—-1

Proof: A detailed proof of part (1) in Theorem 6.3 is beyond the
scope of the text, and the statement will simply be assumed to be
true. The independence between X and 52 is a result of normal
distributions. Almost without exception, the estimators X and 52
are dependent in all other distributions.

Interested reader should learn Basu’s or Chochron’s Theorems
for more details.

9
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To prove part (2) of lheorem 6.3 on the facing page, use Corollary
6.3 to say that > 1" | # x% Then, rearrange the terms to
ey
find an expression for 7, (X—'*U_XA for which the distribution is
recognizable. Start by rearranging the numerator of the \(n distribution.
n n ,
2 ~ | v 2
S Xi=pP =) [(X - X))+ (X —p)]
i=1 =1
n
S-S (-
+ 2 Z X — p)
Since
n T
3 (- X) (T ) — (T ) 3 (- T) —0
i=1 i=1
9]
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it follows that T
T n —.9 - )
Y (Xi—p =) (X = X) +n(X —p) (6.20)
i=1 i=1
Dividing (6.20) by ?, gives
7 12 - 2
SEaXi—w? YR (N -X)T n(X-p)
p) - p) + B ;
o= o a*
which is the same as
(- (-1 (- :
5 = D) + B . (6.21)
a= o= a“

Since X ~ N(p,-Z), it follows that yf

NG

WX —p)?
g~

To simplify notation, let Y, ¥7, and Y5 represent
2 O 2
(n_].z)s . and n(X 2"” in (6.21) respectively. By the part (1) of

Theorem 6.3 on page 126, Y] and Y5 are independent. Therefore,

S (Xi—p)?
y b
=7

9

MARQUETTH
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E {ew] _E ’ermﬂfg)] _E {em] B {eﬂfz]

(-2t =p[eM]. (- 20)~3

(n—1) [y, :
(1 i .?.L)_T — F eﬂfl] = ﬂ’.’[)"] (f) =Y~ szl—l'

_ o= _
X1 — X, Xo— X, ..., X, — X, which sum to zero. Consequently,
specifying the values of any n — 1 of the quantities determines the

. P(X—X)? 5 . .
Note that Y| = Z’%l(# ~ ,x,“)lfl is based on the n quantities

remaining value. That is. only n — 1 of the quantities are free to vary.
n 2
Y — 21 (Xi—p)

In contrast, —
there are no restrictions on the quantities X7 —p, Xo— i, ..., Xp,— .

In general, when statistics are used to estimate parameters, one degree
of freedom is lost for each estimated parameter.

~ X,Z‘l, has n degrees of freedom since

9/30/2019
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Example 6.20 Show that F(S2), E(S?), var(S2), and var(5?) are

in—1a2 o9 2n—1)c*
equal to - n) L o7, = 2)

from a normal distribution.

a4
and == respectively when sampling

. . nS2 (n—1)52
Solution: It is known that —# = ~——

. . e O ot
['heorem 6.3 on page 126. Therefore,

(a)
nS:
E [k—)”] =F [«\'T);—l] =n-—1,s0
72

(n — 1)

~ X, according to

E [s,j] —n—1=E [sj] -
g

K [(n——j)b’)] =F [f\'ﬁ—l] =n-—1

) 2

_ ﬁ{s] —r:—liE{Sg] — o

n

94
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)

S=
var [T;;] = var [X:r?afl] =2(n — 1)

e ;1 2n— 1ot
n—4\’a.1' [85] =2(n—1)= var Sf{] = u
o

?32

2
a“

o [ v 1] 20

var [32] =2(n—1) = var [Sg] = (fdl]) )

(n— 1}2

at

Compare this with what we obtained on slide 54
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Example 6.22 A custom door manufacturer knows that the measurem
error in the height of his final products (the door height minus the
order height) follows a normal distribution with a variance of 0% = 225
mm?. A local contractor building custom bungalows orders 31 doors.
What is the P(S > 18.12 mm) for the 31 doors, and what is the
expected value of $2?

Solution:

-1 30 .
P(S > 18.12) =P (” —5? > W18.1ﬂ) = (x5, > 43.78) ~ 0.05
a~ ZJ

The following computes P(X_%o > 43.78) with S.

> 1 - pchisq(43.78,30)
[1] 0.04992715

Since the expected value of §2 is the population variance, F [82} =

225, "
9
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Example 6.23 [> Probability Distribution of (n—1)5%/o”
<] Usesimulation to generate m = 1000 samples of size n = 15 from
both a N(0,1) distribution and an Fzp(1) distribution. Compute
the statistic (n — 1)52/02 for both the normally and exponentially
generated values labelling the first NC14 and the second EC14. Produce
probability histograms for NC14 and EC14 and superimpose the theoretical
distribution for a Xf,l distribution on both. Repeat the entire process
with samples of size n = 100. That is, use simulation to generate
m = 1000 samples of size n = 100 from both a N(0, 1) distribution
and an Ezp(1) distribution. Compute the statistic (n — 1)$2 /o2 for
both the normally and exponentially generated values labelling the
first NC99 and the later EC99. Produce probability histograms for
NC99 and EC99 and superimpose the theoretical distribution for a ng
distribution on both. What can be concluded about the probability
distribution of (n—1)S* /o when sampling from a normal distribution
and when sampling from an exponential distribution based on the
probability histograms?

9/30/2019
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Solution: The S code that follows generates the required values.
To obtain reproducible values, use set.seed(). In this solution,
set.seed(302) is used.

» set.seed(302)
» par (mfrow=c(2,2), pty="s")
> m <- 1000; n <- 15;
» varNCl4 <- array(0,m) # Array with m zeros
» for (i in 1:m) {varNCl4[i] <- var (rnorm(n))}
» NC14 <- (n-1)*varNCl4/1
» hist (NC14,prob=TRUE, ylim=c(0,0.09),xlab="NC14",col=2,
x1lim=c (0, 60), nclass="scott")
» lines(seq(0,60,.1), dchisqg(seq(0,60,.1), n-1), lwd=3)
» varECl4 <- array(0,m)
» for (i in 1:m) {varECl4[i] <- var(rexp(n))}
» ECl4 <- (n-1)*varEC1l4/1
» hist (EC14,prob=TRUE, ylim=c(0,0.09),xlab="EC14",col=4,
x1lim=c (0, 60), nclass="scott")
» lines(seqg(0,60,.1), dchisqg(seq(0,60,.1), n-1), lwd=3)
9
MARQUETTH
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R CODE (CON’T): o
» n <- 100
> m <- 1000
» varNC99 <- array(0,m)
» for (i in 1:m) {varNC99[i] <- var (rnorm(n))}
» NC99 <- (n-1)*varNC99/1
» hist (NC99, prob=TRUE, ylim=c (0,0.03),x1lab="NC99",col=2,
x1lim=c (0,200), nclass="scott")
» lines(seq(0,210,.1), dchisqg(seq(0,210,.1),n-1),1lwd=3)
» varEC99 <- array(0,m)
» for (i in 1:m) {varEC99[i] <- var (rexp(n))}
» EC99 <- (n-1)*varEC99/1
» hist (EC99,prob=TRUE, ylim=c (0,0.03),xlab="EC99",col=4,
x1lim=c (0,200), nclass="scott")
» lines(seq(0,210,.1), dchisqg(seq(0,210,.1),n-1),1lwd=3)
od
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R CODE (CON’T):
» NC14 <- c(mean (varNCl4), var (varNCl4), mean(NC1l4), wvar (NC14))
» EC1l4 <- c(mean(varEC1l4), var(varECl4), mean(EC14), var (EC14))
» NC99 <- c(mean (varNC99), wvar (varNC99), mean (NC99), var (NC99))
» EC99 <-c (mean (varEC99), var(varEC99), mean (EC99), var (EC99))
» MAT <- round(rbind(NC14, EC14, NC99, EC99), 4)
» COlNAM <- c("E(S"2)", "Var(s~2)", "E(X"2)", "Var (X"2)")
» rowNAM <- c("NC14", "EC14"™ ,"NCO99", "EC99")
» dimnames (MAT) <- list (rowNAM , colNAM)
» print (MAT) # Numerical values for Table 6.3
Table 6.3: Output for Example 6.23
E [S'-'] var [H"’] E t%ﬁ var | S—p—
NC14 | 1.0013  0.1477 14.0186
EC14| 0.9862  0.5268 13.8062
NC99 | 1.0049  0.0207 99.4820 :
EC99 | 1.0120  0.0843  100.2756 826.4671
10
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Examine Table 6.3 on the preceding page, and note that the means
for the simulated S2 values (E(S'“))) for NC14, EC14, NC99, and EC99
are all close to the theoretical variance (o2 = 1). However, only
when sampling from a normal distribution does the variance of S2
equal 20%/(n — 1). That is, the simulated var(S?) values for NC14
and NC99 are 0.1477 and 0.0207 which are close to the theoretical
values of ﬁ = (.1428571 and Q‘% = 0.02020202. The means and
variances for the simulated (n — '1)52/02 values are approximately
(n — 1) and 2(n — 1) respectively for NC14 and NC99. However,
the variances of (n — 1)52/0'2 when sampling from an exponential
are not close to the values returned with NC14 and NC99 nor is the
simulated sampling distribution for (n — ])52/02 approximated very
well with a X'T)z—l distribution when sampling from an exponential
distribution as evidenced by the graphs on the right hand side of
Figure 6.4 on the next page. In other words, the sampling distribution
for (n—1)S%/a? can only be guaranteed to follow a kal distribution
when sampling is [rom a normal distribution.

107

9/30/2019

51



MARQUETTH
UNIVERSITY
Be The Difference.
GRAPH OUTPUT:
g g
= S
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Figure 6.4: Probability histograms for simulated distributions of f—’,d— when sampling from normal and exponential distributions. NC14 designates the
e - - 1/
MARQUETTH
JOEL QUESTION: Y
M Be The Difference.

* | tried the simulations withn = 500 andn = 1000. The("‘g—lz)s2

from the exponential doesn’t appear to be approaching y? even
forn = 500 orn = 1000. What do you think?

» n <- 500
m <- 1000
par (mfrow=c(2,1))

\ A%

varNC <- array (0, m)

for (i in 1:m) {varNC[i] <- var(rnorm(n))}

NC <- (n-1)*varNC/1

hist (NC, prob=TRUE, xlab="NC", col=2, xlim=range (NC) ,

nclass="scott")

lines (seg(min (NC) ,max (NC), length.out=100),

dchisg(seg(min (NC),max (NC),length.out=100),n-1), lwd=3)

» lines (seq(min (NC),max (NC),length.out=100),
dnorm(seq(min (NC) ,max (NC), length.out=100),

mean=n-1,sd=sqgrt (2* (n-1))),1lwd=3,col=3)
» legend("topright",c("Chi-squared", "Normal"),col=c(1l,3),lwd=3)

Y V V V

Y
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ANSWER TO JOEL QUESTION:

varkEC <- array(0,m)
for (1 in 1l:m) {varEC[i] <- var(rexp(n))}
EC <- (n-1)*varkEC/1
hist (EC, prob=TRUE, xlab="EC", col=4,xlim=range (EC),
ylim=range (dchisqg(seq(min (EC),max (EC),length.out=100),n-1)),
nclass="scott")
» lines (seqg(min (EC),max (EC), length.out=100),
dchisg(seg(min (EC),max (EC),length.out=100),n-1), lwd=3)
» lines (seqg(min (EC),max (EC), length.out=100),
dnorm(seq(min (EC) ,max (EC), length.out=100),
mean=n-1, sd=sqgrt (2* (n-1)) ), 1lwd=3,col=3)
» legend("topright",c("Chi-squared", "Normal"),col=c(1l,3),lwd=3)

Y V. V V

» ### Right Normal Fit ###

» lines (seqg(min (EC),max (EC), length.out=100),
dnorm(seq(min (EC) ,max (EC), length.out=100) ,mean=n-
1,sd=sd(EC)),1lwd=3,col=3)

104
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6.6.2 (-Distribution
Given a random sample X1, ..., X, that is drawn from a N(p, o)
distribution, X ~ N(u, o /+/n), which implies
X—pu
£~ N(0,1). (6.22)

a/v/n

The quantity (6.22) is used primarily for inference regarding po. However,
this inference assumes ¢ is known. The assumption of a known o is
generally not reasonable. That is, if g is unknown, it almost certainly
follows that o will be unknown as well. Fortunately, inference regarding
(e can still be performed if o is replaced by S in (6.22). Specifically,
the quantity

X—u

S/vn

follows a well known distribution described next.

109
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DEFINITION 6.1:  Given two independent random variables Z and
U, where Z ~ N(0,1) and U ~ \f, we define the {-distribution with
v degrees of freedom as the ratio of Z divided by the square root of
U divided by its degrees of freedom. That is

T:Z

Uy
v

Using Definition 6.1, one can readily see why (6.23) follows a t-distribution
with n — 1 degrees of freedom since

_ _ X—p
X—pu X—p c/n Z y
= = = =~ ~lp—1-
S/vn 5 [—1s? e Un 1
v\l (n—1)a2 n—1 n—l
10
MARQUETTH
UNIVERSITY
HISTORY OF T'DISTRIBIJT‘ION Be The Difference.
The t-distribution, also called Student’s t-distribution was first described
in a paper published by William Sealy Gosset under the pseudonym
“Student.” Gosset was employed by Guiness Breweries when his research
relating to the ¢-distribution was published. Since Guiness Breweries
had a policy preventing research publications by its staff, Gosset
published his findings under the pseudonym “Student.” Consequently,
the t-distribution is often called Student’s {-distribution in his honor.
The pdf, expectation, and variance of a {-distribution with » degrees
of freedom are given in Box (6.25).
t-Distribution X ~ 1,
r (%) 2\ ~F
P x o,
flz)=———~ |1+ — for —oco <2 < o0 _
Vel (%) v (6.25)
EX]=0
B v
var[ X ] = for v > 2
v =2
107

9/30/2019

54



MARQUETTH
UNIVERSITY

Bivariate Change of Variable

Given two continuous random variables, (x;,x,)
with joint probability distribution function fy, x, (x,.%,16).

Let [yl(xl,xz)] be a transformation from (x,,x,) to(y,,y,)

¥, (X,%,)

with inverse transformation («’ﬂ()’ub)J )
%(¥¥,)

D.B. Rowe

MARQUETTH
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Be The Difference.

Bivariate Change of Variable
Then, the joint probability distribution function £ ,. (v, ¥, 16)
of (¥,¥,) can be found via
Frn O3 10)= fi (5, ¥, %, (7 )1 0)x 1 (x, %, = ;. 3,) |

dx (y,y,) dx(y,y,)

dy, dy,
where J(x,x, = y,,) =
dx,(y,, ¥,)  dx,(y,y,)
dy, dy,

D.B. Rowe

10¢
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Bivariate Change of Variable - Normals

Let uy~uniform(0,1) and u,~uniform(0,1).
The joint PDF of (u,,u,) is

1 if ue[0.1] and u, €[0.1]

f(""”?)_{o if w ¢[0,1] or u, ¢[0,1]

If z, = z,(u,,u,), z, = z,(u;,u,), the joint distribution of (z,,z,) is
fZl.Zz(Zl’ZZ 10) :.fu],uz (ul(Z]’ZZ)’u2 2, 2,) | Q)X | (uyuy > 2,2,) |

du(z,.2,)  dulz,z,)
% ) dz, dz,
U Uy = 2,2,) = .
ST du,(z.2,)  diy(z,2,)
dz dz,
D.B. Rowe
110
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Bivariate Change of Variable - Normals

Let z, = ,/—2 In(u, ) cos(27zu,) and z, = ,f—ZIn(ul) sin(27u, )

1 - 2
—(z1+z3) 1 ZZ
then u,(z,z,)=e * and u, zl,22)=2—atan(_ ]
v/ g
du(z,,z,) du(z,z,)
dZ dZ. 1 l[_;_l.z:?)
Ju, = z,2)=| N e
du,(z,,z,) du,(z,,z,) 2

| dz, dz,

D.B. Rowe
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Bivariate Change of Variable - Normals

Therefore,
f,z,,z2 (z,2,160)= fU],U2 (“1 (2,2, ),u,(2;,2,) 9)>< | J (w1t = 2, 2,) |

which upon insertion yields

f7.2.(2:2,10) = —e’
Jz,,2, L1542 _
L2 2 27 Joint PDF factors

thus independent

This means z;, ~ N(0,1), z, ~ N(0,1), z, and z,are independent.

D.B. Rowe
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Bivariate Change of Variable - Normals

Generate 108 independent uniform(0,1)’s.

The first half of the 108 standard uniform random variates
were used as u4's and the second half used as u,’s.

Take each (u,,u, ) pair to produce a(z,,z,) pair.

7, =[2In(u) cos(2mu,)  z, =4[-2In(u,)sin(27u,)

(z,,2,) are independent normally distributed.

D.B. Rowe
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Bivariate Change of Variable - Normals

n=10"6; ) [mean(ul),var(ul)]
ul=rand(n/2,1); z1=sqrt(-2*log(ul)).*cos(2*pi*u2): [mean(u?).var(u?)]
u2=rand(n/2,1); 22=sqrt(-2*log(ul}). *sin(2*pi*u2); [mean(z1),var(zl)]
figure(1) figure(2) [mean(z2),var(z2)]

hist([ul;u2],50) hist([z1;22],50) [corr(ul.u2),corr(z],22)]

0.5000 0.0832
| 05006 0.0833
1 0.0000 1.0011
{ -0.0016 0.9970
| 0.0025 0.0013

f

Uncorrelated
and since normal
are independent

91 02 03 04 05 08 07 08 09

D B. Rowe

ll
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Bivariate Change of Variable - Student-t

We showed that if x~normal(,, o) for i=1,...,n, then

2
the distribution of X ~ N[,u,a—] and z= XKL N(O.1)
n

a/\/;

n(x-xY 2,
and that the distribution ofy3=2( ’J ] ~ 7' (n=1).

i=1

Note thaty, = ﬂ
(n l)s2 L .
It turns out that z and ——— are statistically independent!
o
D.B. Rowe

11€
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Bivariate Change of Variable - Student-t

X—u vst o,
So z= ~N@OI) andy,=—~x (), v=n—1.
O'/‘\/E e O_Z Z ( ) Vv I
Let =——— and §=Y,.
}’Q/V
tls ~ . o
Then z =—= and Y, =5, the Jacobian of the transformation is

7

dz(t,s)  dz(t,s)

di ds | s

J(z,y—>t,5)= =—=
dy,(t,s) dy,(t,5)| v

dt ds

D.B. Rowe
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Bivariate Change of Variable - Student-t

Here we use the assumption
that z and y are independent!

The joint distribution of (7,s) is
frsts10)=Ff, (3,(t.5),2(,5)10)x1 J(y,,2 > 1,5)]

site i) |\/;|
t,s10)=
frs(t,510) r(%)z,,;z\/gxwg

and by integrating out s the distribution of 7 is

(2) (13 10)"

fT(tIV):M—;(I)(1+%;2)T_ _O(-;:/l_)s
-4 ,2: O'E

~tn-1))

The distribution of = —F——
VY, /(n=1)

D.B. Rowe

11
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(vl
f() l ( i)

(1+L

t-Distribution

2
T

XN!-_!/

v+

-T2
for —oco <2< o0

vl (g) \ v (6.25)
E[X] =0
ar[X] = —— for v > 2
var|. |=——forv>

The shape of the {-distribution is similar to that of the normal
distribution; but for small sample sizes, it has heavier tails than the
N(0,1). Figure 6.5 on page 152 illustrates the densities for t-distributions
with 1,3, and oo degrees of freedom respectively. Note that {0 =
Za. To find the quantity £, the S command pt (e, ) can be used.

[n particular, suppose t;g0.1, depicted in Figure 6.5 on page 152, is
desired. Using the S command pt(0.80,1), gives 1.376382 for the
answer.

11
MARQUETTH
F
REMARKS ON T-DISTRIBUTION o
1. t-dist. has similar shape as N (0, 1), but is flatter than N (0, 1).
2. The t-distribution is symmetric around 0 as N (0, 1) is.
3. Ithas arange from —oo to oo as the range of N(0, 1).
4. Unlike N(0, 1), the t-distribution depends on
the degrees of freedom df.

5. Asthe dfincreases, t-distribution approaches to N (0, 1).

e | ' af=1 |

0.30| — df=2 |

o.2s5] — df=5 |

= df= oo
= 0.20

0.15

0.10

0.05

©.00 —a4 — E 2 =Y
* Applet: t-distributionvs N (0,1)
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Example 6.24 The tensile strength for a type of wire is normally
distributed with an unknown mean g and an unknown variance 2.
Five pieces of wire are randomly selected from a large roll, and the
strength of each segment of wire is measured. Find the probability

that Y will be within \Z/% of the true population mean, f.

Solution: The solution is:

28<?< 25 '28<—. <28
Pl g —— i+~ =P | ——= — [l —_—
(’” i =k \/ﬁ) ( = TA= )

Note that if o were known, P(—2 < Z < 2} = 0.9544 n
12!
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The Sampling Distribution for X —Y when oy and oy
are Unknown but Assumed Equal

Theorem 6.4  Given two random samples X1,..., Xpand Y1,..., Y,

that are taken from independent normal populations where X ~
N(px,ox)andY ~ N(uy,oy)and ox = oy, the random variable

(X =Y) = (ux — py)]

(ny—1) %(+(n3,-—1)5§, 1, 1
ny-+ny —2 nx ' ony

~ bnyetny—2- (6.26)

127)
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)S% —1)S;
By Theorem 6.3 on page 126, (n—\# X’i‘»‘(* , and L)J—
' 7X ‘ %y

X’EL}-'—].' Since X and Y are independent, it follows that

- +) ~2
(?”LX — l);sj( (ny — 1}5}‘ 2
+ ~
2 D) f\’.n;\-—HLy—?
J/Y O-}/

W =

from Theorem 6.2 on page 119. Using the definition of the {-distribution
from 6.1 on page 148, ﬁ ~ ty. In this particular case, v = ny +
v

ny — 2 and since oy = gy = 7 is assumed,

127
MARQUETTH
UN]\’ETI:SITY
(X —Y) — (pux — py)
0% oy
Z nx Ny
w (nx — 1)-5;“)\, (ny — 1)8%—
v 2 - P)
G’;{( Ui"
ny +ny —2
B X - } (p \( — py) 1
[~ _,__ (nxy —1 S‘ (ny—l)S;—),'-
"X ny +ny —2
B [(X=Y) — (ux —py)]
= 5 2 ~ ['nx—kny—l
(nx — ])S}{ + (ny — 1}8}/ 1 " 1
ny +ny —2 ny ny
12
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6.6.3 The F Distribution

In Section 6, it was seen how the t-distribution can be used to
make statements about an unknown mean g when ¢ is also unknown.
Another common problem statisticians face is that of comparing unknown
variances. For example, in manufacturing processes, in mixtures, or
in quality from different suppliers of goods. The distribution which
allows us to make these comparisons is the ' distribution.

DerFINITION 6.2: If U and V' are independent random variables,
each with a y2 distribution with 1 and v degrees of freedom respectively,
then

U

T~ Fy

9

e
Bivariate Change of Variable - F —
Recall that Z;(x";ﬂjg =§(x";x]2 +[%T :
) f(vn 1) P l
It turns out that =(%T and y2=§[x‘;f]2

are statistically independent.

But of interest to us (hypothesis testing) is the distribution of

_Y1/V1

o iv, where y, ~ y*(v,) and y, ~ y*(v,) .

129
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Bivariate Change of Variable - F

Let y; and y, have independent 32 PDFs with v, and v, df

Vii2-1 oy, f2

Vi
(v, /2)2%"

We can find the distribution of f =M (and g=y,)
s
via the bivariate change of variable technique

Tra(f:810)=f, . (0 (f.8). 3,(f.)1)x1 T (y, ¥, = [, 8)]

Filv) = y.>0,i=12.

and marginalization f,(f160)= If,.-_G(f,g 16)dg .

D.B. Rowe
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Bivariate Change of Variable - F

The joint distribution of (f,g) is
Fra(F:810)= f o (0 (f.8) 3, £ 10X (3,3, > f.8)]

the original variables in terms of the new variables are

V,
y=—1gf and y, = g with Jacobian

v,
dy(f.g) dy(f.g8)
df dg 1%
J(y,y, = f.8)= . . |=—"z
dyz(fvg) dyg(fsg) Vg
df dg
D.B. Rowe

12
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Bivariate Change of Variable - F v,
Y =ng »,=8

The joint distribution of (f, g) is
Tra(f:810)=fr y (0 (f,8), ,(f-)1Ox1 T (¥, ¥, > [, 8)]

A\

Wil (v )
Vl t L¢] o ,JL
(gfj ¢ gv;;’l—l —gh2

V, e
Cv /227 T(v,/2)2""

fe(f10)= fr6(f.816)g

T, +v)/2) [ vf V" __nf "
T, /2L, I 2D\ v, f+v,

f,we(_;(fag | 9) =

fe(f vy =

D.B. Rowe
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Bivariate Change of Variable - F

The joint distribution of £ =2"L is
Y2 1 v,

F distributed with v, numerator df and v, denominator df

r(-5)

_ vif " _Vl—f B
fF(flV"Vz)_F(Z‘)F(?){Vlf"'vz} [l Vlf-H/EJ

where v,,v, =1,2,... Z[:”]=Z{j]2+[;fjﬁ}
Therefore, I L
A (x-uY n(x —%Y
= 1 : -~ F(ln—-1
! Ha/\/ﬁj/}/{z[ o ]/(" )} b
D.B. Rowe

12¢
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The pdf, expected value, and variance of an F distribution are given

in Box (6.27).
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F Distribution X ~ Fy, 1
f(q,) r (J‘) TW) .U_l %L T_’_’}_l - V_l,r *%(Vllﬂ/g)
- _F(@)F(%ﬂ) v) vy
vy -
ElX]| = 5
vy — 2
205 (1 + 2
var[X] = 1l OU) ) provided vy > 4
vi(va — 2)% (o — 4)

The I distribution depends on its degrees of freedom and is characterized
by a positive skew. Figure 6.6 on the lollowing page illustrates three

different F' density curves.

(6.27)

F DISTRIBUTION

* Right skewed distribution
¢ Defined over positive numbers

* Parameters: df,=v,, df,=v, |
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— 14‘
. o
¢ How to write: ol
- F(vy,vy) 0 |
. — 411, d2=1
2 o _] —_— d1=2, d2=1
r) - — d1=5, d2=2
o Fv,va) =705 d1=100, d2=1
va e N d1=100, d2=100
o §‘:_—_1
¢ F Calculator ° T l T T r |
e Ti-84: Fcdf(lower, upper, dfNumer, dfDenom) 0 1 2 3 4 . 5

Source: Wikipedia
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Theorem 6.5 If there are two random samples X1,..., X and
Yi,..., Y, that are taken from independent normal populations

where X ~ N(ux,ox) and Y ~ N{upy,oy), then the random
variable

52
0.'_.
X o e
g ~ an—l,ny—l- (6'28)
P
- O-}' -
% Xyl L SE Xapo
Proof: Since;ﬁ% ~ T{‘—Ll and ;%: ~ Tj)——h by Theorem 6.3 on page 12

it follows that

To find the value fo; ), 1y, where P(Fy, vy < faiy, 1) = a with S,
use the command qf (p,df1,df2) where p is the area to the left
(probability) in an £ distribution with v} =df1 and 1 =df2.

137
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Example 6.25 Find the constants ¢ and d such that P(F5 19 <
c) = 0.95 and P(F5 19 < d) = 0.05.
Solution: Using the S commands qf (0.95,5,10) and qf (0.05,5,10)
returns the values 3.325835 and 0.2111904 respectively. n

Example 6.26 Use S to find the values associated with the points
J0.025:10,10 and fo 975.19,19 depicted in Figure 6.6 on page 162.
Solution: The answers using S are:

> qf(.975,19,19)
[1] 2.526451
> qf(.025,19,19)
[1] 0.3958122

Note that a relationship exists between the £ and I distributions.
Namely, t?, = Fy ,, and the relationship between the values in both
distributions is

7 =/ (6.29)
T—af2p - l—a; - sy

For example, 18_975;5 = 25712 = 6.61 = Fy.95:1 5
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———————e——————————— e e e e
Bivariate Change of Variable - F/Student-t

We just showed that
_nlv

—_ 2 2
xX—u x—-X
S F(n—1 = )= L
f v, (I,n—1) where ¥, (O_/ ,—n] and ¥, E[ - j

i=1
Recall that we showed that

£ = 2
t=——=~1t(n-1) L_X—H _(n—1Ds
fyz/(ﬂ_l) where 2 o/n and yz——aZ ?

What this means is, when v, =1, f=:2!

-1\ GE A3 oo
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I
Bivariate Change of Variable - normal, y?, t, F

Recap: 1, and u,~uniform(0,1) and independent

3= 1/—21[1(14]) cos(27u, ) 2, = ,/—Zln(ul) sin(27zu, )
7, ~ N(0,1) ,z, ~ N(0,1), z; andz, are independent
2

5 - o I f—‘u -
X, =0z, +u~N(u.o’) x"N[%?) i N(O,1)

[ x-u 2~ ) ‘7(n—1)5‘2_ 2,4 Yyandyare
3‘"1_[0./\/;] @, y= o> Z (=D independent

e _ y1/1

- tn-1 =—2l  _F(n-1
t J»./(n=1 fn=D, / y, [ (n=1) (hn=D.
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QUESTIONS?

* ANY QUESTION?
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