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Chapter 7
Point Estimation
7.1 Introduction

e [n general, the pdf of a random variable X is f(x|@), where 0 is
the vector of parameters that characterize the pdf.

e The vector of parameters 0 is defined in a parameter space denoted
©. For each value of @ € ©, there is a different pdf.
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e To obtain possible values for the vector of parameters, a random
sample from the population of interest is taken and statistics called
estimators are constructed.

e T'he values of the estimators are called point estimates.

e For example, X may be used as a point estimator for js, in which
case T is a point estimate of p.

e Since estimators are statistics or functions of random variables,
they themselves are random variables.

e Studying the sampling distributions of estimators as well as their
statistical properties such as mean square error, bias or unbiasedness,
efficiency, consistency, and robustness, all of which will be defined in
this chapter, will give guidelines about which estimators to employ.

MARQUETTH

UNIVERSITY

7.2 PROPERTIES OF POINT ESTIMATORS Be The Direne.

7.2.1 Mean Square Error

e The goodness of an estimator is related to how close its estimates
are to the true parameter.

e The difference between an estimator T' for an unknown parameter
#, and the parameter 8 itself is called the error.

e Since this quantity can be either positive or negative, it is common
to square the error so that various estimators 17, 15, ..., can be
compared using a nonnegative measure of error.

e To that end, the mean square error of an estimator, denoted
MSEITY, is defined as MSE[T| = E [(T — 60)*].

e Fstimators with small MSE will have a distribution such that the
values in the distribution will be close to the true parameter.
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o [n fact, MSE consists of two nonnegative components, the variance
of the estimator 1" and the squared bias of the estimator T', where
bias is defined as [T — 6 since

MSE[T] = E [(T — E[T) + E[T) - 9)2]

2

B[T — E(T]]" + E[(E[T) - 6] (1)
2E((T — E[T))(E[T] - 6)]

+
~

var[T] = (E[T] — 6)> = 2(E[T) — E[T|)E[T] — 6)

= var[T] + (E[T] — 6)*

. ) 9 - o
= var[T| + (Bias[T])". (7.2)
L
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Low Variance, Low Bias Low Variance, High Bias

‘

High Variance, High Bias

Estimators that minimize MSE for all possible values of  do not
always exist.

In other words, an estimator may have the minimum MSE for some
values of 8 and not others.
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7.2.2 Unbiased Estimators

When E[T| = 6, T is an unbiased estimator of 6.

When an estimator is unbiased, its MSE is equal to its variance,
that is, MSE[T] = var[T]. On the other hand, when E[T] # @, the

estimator is biased.

Example 7.1 Show that the sample mean and the sample variance
are unbiased estimators of the population mean and the population
variance respectively.
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Solution: To show that $% is an unbiased estimator of o2, use the
fact that

n n

Y- X)X - —n(u-X)

i=1 i=1

n—1 n—1

E|s?| =& !Z?ZI(X?: -9’1 _, ! (X =P —n(u—X)°
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Example 7.2 Suppose X ~ Pois(A) where A is unknown. Show
(a) X is an unbiased estimator of \.

(b) 2X is an unbiased estimator of 2.

(c) X% is a biased estimator of A2,

Solution: Tosolve the problems, keep in mind that if X ~ Pois()\),

E[X] = A, and var[X] = A

(a) Since E [X] = E [ » L} oy BN ”,—g\ = A, it follows

i=1"n i=1"n
that X is an unbiased estimator of \.

(b) Since £ [QX] = 2K [X] = 2), it follows that 2X is an unbiased

estimator of 2.

¢) Since b[i"} = var [ X ]| + ,Ll-2 = A + A2 it follows that )?2 is a
X n

. . ) =y . -
biased estimator of A=. However, X~ is an asymptotically unbiased
estimator of A“. That is, as n tends to infinity, the estimator becomes

unbiased. n
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Example 7.3 Suppose { X1, Xo, ..., Xp}isarandom sample from

a N(pu, o) distribution. Show that S is a biased estimator of o.

( 2 ; 1152
Solution: Recall that U”_—;J_ﬁ ~ X'fz.fl' Let X = (7}+}S and

take the square root and the expected value of both sides:

b{\/f}—b[ES}

ag

o0
Since X ~ X?ﬁ.—h the expected value of VX is [ /Zf(z)dz, where
—00

f(z) is the pdf of a chi-square random variable.
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> 1 n—1 1
£ [W] = VT —a' 7 leTidy
0 I (i;—l) 27
1 MO0 n—1 1 1
- n—]] 7 e 2da
r (&;—1) 277 Jo
1 o
- nl[ I%_le_fdf (7.3)
0

Next, use the change of variable /2 = t where dx = 2dt in an

attempt to force the right hand side of (7.3) to look like a gamma
o0

function. Specifically, recall that I'(a) = [ 2%~ 'e™%dz for a > 0.
0

10
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SOLUTION CONT’D o
] o0
EVX| - [ enEtetod
r(zgt) 27 Jo
i
= 2 mt%_l(_t(lt:ﬁr %)

Since

it follows that

VI (3)

ES =0 : (7.4)
vn —1I (”2 )
Therefore, S is a biased estimator of . "
Note that the coefficient & is virtually 1 for values of n > 20.
\/nfll‘(”—g—l)

11
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7.2.3 EFFICIENCY

A desirable property of a good estimator is not only to be unbiased,
but also to have a small variance; which translates into a small MSE
for estimators, regardless of whether they are biased or unbiased. One
way to compare the MSE of two estimators is by using relative
efficiency. Given two estimators T7 and T, the efficiency of T7
relative to Th, written eff (71, T5), is

MSE [T]

eff(T1,15) = MSE[T,]

When the estimators in (7.5) are unbiased, the efficiency of T} relative
to T is simply the ratio of estimators variances written
var [T5)

(iﬁl(Tl._ T.Z) ~ var [Tl] :

17
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EFFICIENCY CONT’D

e The estimator 77 is more efficient than the estimator T4 if for
any sample size, MSE [T7] < MSE [T3], which then implies that
eff (T, T5) > 1.

e When the estimators are unbiased, the estimator 77 is more efficient
than the estimator T if for any sample size, var[T]| < var [Th],
which also implies that eff(77,T») > 1.

e [f a choice is to be made among a small number of unbiased
estimators, simply compute the variance of all of the estimators
and select the estimator with minimum variance.

e [However, if the estimator that has the smallest variance among all
possible unbiased estimators must be chosen, an infinite number of
variances would need to be calculated. Clearly, this is not a viable
solution.
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e Thankfully, it can be shown that if T = 6 is an unbiased estimator
of 8 and a random sample of size n, X1, Xo, ..., Xy, has pdf f(z|9),
then the variance of the unbiased estimator, @, must satisfy the

inequality

var [9] > ! , (7.6)

I Kalnf(x e)ﬂ

where f(X#) is the density function of the distribution of interest
evaluated at, the random variable X.

e [n the discrete case, p(X |0} is used instead of f(X6).

e [11 general, the probability distributions of both discrete and continuous
distributions are referred to using the notation f(z).

e The inequality in (7.6) is known as the Cramér-Rao inequality,
and the quantity on the right hand side of the equation is known
as the Cramér-Rao Lower Bound (CRLB).

14
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CRAMER-RAO LOWER BOUND

DEFINITION 7.1:  If 8 is an unbiased estimator of 8 and
P 1
var [8] = (7.7)

0 E [(E)lnf%)ﬂf)))g]

then @ is a minimum variance unbiased estimator of 8.

=1

-1

e Not all parameters have unbiased estimators whose variance equals
the CRLB. However, when the variance of an unbiased estimator
equals the CRLB, the estimator is efficient or minimum variance.

e The quantity in the denominator of (7.7) is known as the Fisher
information about 6 that is supplied by the sample.

e That is, the smaller the variance of the estimator, the greater the
information.
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Example 7.5 Show that X is a minimum variance unbiased estimator
of the mean A of a Poisson population.

Solution: If X ~ Pois(A) then according to Box (77?), E[X] = A,

var[X] = A, and the pdf of X is

AT A
!

(X =2z|A) =

(7.8)

eSince £ [X| =31, b"* L2IELS) D

n ?
e X is an unbiased estimator of A, with variance % because the

var [ X }—war[zzl ] LS var [X; —i’}:%

n=

e Consequently, if the CRLB equals %, X is a minimum variance
unbiased estimator of A according to Definition 7.1.

e By taking the natural logarithm of (7.8),

InP(z|\) =2 In(A) — A — In(z!). (7.9)
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o Taking the derivative of (7.9) with respect to A gives

Jlnp(x|A) _r r—A
oA A N

)

B dlnp(X|N\)\> CvarlX] A 1
O IEXP TP

and the CRLB is

e Hence

L /omexX A\ i
b [(T) ] -k

e Therefore,

E[(X = )N?  var[X]
Y

1 A

[y

e Consequently, since X is unbiased and var [X} = 7—);, it follows that
X is a minimum variance unbiased estimator of A.
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Example 7.6 Show that X is a minimum variance unbiased estimator
of the mean 8 of an exponential population.

Solution: If X ~ FEup (%) then according to Box (?7), when

using the substitution ¢ = %, E[X] =6, var[X] = 6%, and the pdf of
X is |
—e= /0 if g >0

flz)y =<8 . (7.10)
0 ifx <0
Since K [)_1] = le ﬂf—ll = %—9 = 6, it follows that X is an unbiased

. . . L X
estimator of @, with variance i since var [X } = var [ ?21% =

L~ oy o nd2 62 . . ol
EEE Tovar[X;] = = Consequently, if the CRLB equals
=, X is a minimum variance unbiased estimator of # according to

Definition 7.1. By taking the natural logarithm of (7.10),

In f(z]6) = — In(6) — g (7.11)
1
MARQUETTH
bt e
Taking the derivative of (7.11) with respect to 8 gives
dln f(z]d) 1 LT o
a0 882 g2
Hence
| (2 r(X]0) 2 pl(X=t | B(X -6 varlX]
a0 B 62 ot I
Therefore,
5 dln f(X|N)> CvarlX] 62 1
90 o #
and the CRLB is
1 6’
B [((’)Inf(,\' 9))3] n
oo
Consequently, since X is unbiased and var [X] = _H,T-) it follows that
X is a minimum variance unbiased estimator of 6. .
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EXAMPLE

Example 7.7 > Comparing Estimators: Blue Jean Length
<1 Suppose the true manufactured length of new 32L blue jeans
follows a normal distribution with unknown g and ¢ = 0.5 inches.

It is known that 32L blue jeans sold in stores have a length of at
least 31 inches. If a random sample of size n = 3 of 32L blue
jeans is taken to estimate g, which of the following estimators fi

or fio is better in terms of bias, variance, and relative efficiency where
fip =033 (X1 + Xo+ X3) and jio = 0.50 - (X1 + X9)7

20
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SOLUTION

E [ﬂlj =033-F [){1 + X9+ )(3] =0.33-(F [)('1: +F [Xz] + K [)(3})
=0.33(p = p+ p) = 0.99u,

it follows that fi; is a biased estimator of g with bias 0.99p — p =

—0.014. On the other hand

Elfio] = 0.50-E [X] + Xo] = 0.50-(E[X1] + E[X5]) = 0.50-(p+p) = p
which makes fio an unbiased estimator of y. The variances of i1 and
[io are

var [f| = var [0.33 . (X1 +Xo+ )&3)}
= 0.33% - (var[X|] + var[Xs] + var[X3))
—0.33%- (0.25 + 0.25 + 0.25) = 0.081675, and

var [fio] = var [0.50 - (X1 + X3)] = 0.50% - (var [X1] + var [Xo])
=0.25-(0.25 + 0.25) = 0.125, respectively.

2]

9/30/2019
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Before looking at the relative efficiency of fi; to f19, compute the MSE
for each estimator using the fact that MSE = Variance + Bias?.

MSE[j] = 0.081675 = (0.0112)* = 0.081675 + 0.0001°
MSE[ji5) = 0.125 — 0% = 0.125

Since

. MSE (i) 0.125
eff (fi1, fiz) = i) _

MSE ({1} 0.081675 + 0.00012
conclude that fi9 is both more eflicient and has smaller MSE than
does fi1, since it is known that g > 31 inches according to the
problem. s

< 1 for all |p| > 20.82,

22
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7.2.4 Consistent Estimators
The next property of estimators which is considered is consistency.
Consistency is a property of a sequence of estimators rather than
a single estimator. However, it is rather common to refer to an
estimator as being consistent. Sequence of estimators means that
the same estimation procedure is carried out for each sample of size
n. If T'is an estimator of 6 and X1, Xo. ... are observed according to
a distribution f(x|0), a sequence of estimators 171,75, ..., T, can be
constructed by performing the same estimation procedure for samples
of sizes 1,2,...,n respectively. In other words, the sequence is

Ty = (X)), T = t(X1, Xo)s .., T = (X, Xon ., X0).

A sequence of estimators T}, (defined for all n) is a consistent
estimator of the parameter @ for every 8 € O if

lim B(|T, — 8| > ¢) =0, forall e > 0. (7.12)

n—oo

9/30/2019
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An equivalent statement of (7.12) is that a sequence of estimators T,
(defined for all n) is a consistent estimator of the parameter 8 for
every 8 € O if
lim B(|T, — 0| <¢)=1, forall e > 0. (7.13)
n—oo
Both definitions (7.12) and (7.13) state that a consistent sequence of
estimators converges in probability to the parameter 8, where &
is the parameter the consistent sequence of estimators is estimating.
In practical terms, this implies that the variance of a consistent
estimator decreases as n increases and that the expected value of
T, tends to @ as n increases. Further, given a consistent sequence of
estimators, say Tj,, Chebyshev's inequality guarantees that

E[(T, — 6)*

P(|Ty — 0] > €) = P(|Th — 8|2 > (2) < 5 ,

@

for every 8 € ©. Since £y |(T), — 9)2] can be expressed as

Ey [(Tm - e)?] — var[Ty] + (Bias|[Ty])?,

24
MARQUETTH
UNIVERSITY
REMINDER Be T Difrece.
A sequence of estimators T}, (defined for all n) is a consistent
estimator of the parameter @ for every 8 € O if
lim B(|T, — 8| =€) =0, forall e > 0. (7.12)
n—aoo
Chebyshev’s inequality guarantees that
o 9 _ El(T,—0)y
P(ITn 0] > ) = 2T — 0 > &) < 222 O1]
for every 8 € ©. Since £y |(T), — 9)2] can be expressed as
2 : , 2
Ey [(Tm - 19)“] = var[Ty] + (Bias[Ty )*,
if
lim var[T,] =0 and  lim (Bias[T},))* =0, (7.14)
n—o0 : n—oo
then T}, is a consistent sequence of estimators of 8. Whenever the
25
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Example 7.8 Let {X1, Xo,..., Xp} be a random sample of size

. L . : . > - -
n from a distribution with mean g and variance o=. Show that X,
is a consistent estimator of fi.

Solution: For X, to be a consistent estimator of g, it must be
shown that

lim P(| X, —p| > ¢) =0 forall ¢ > 0.

n—oo

Using Chebyshev’s inequality and the fact that £ [X,] = p and
var [Xn} — o /n,

_ 1
(1% — il > o/ V) < .

k
By setting € = ko /\/n, k = \/ne/o so that
I o*
k2 ne?’
2
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SOLUTION CONT’D
from which it follows that
i a 2 — =
P(|Xp —p| =€) < —5. (7.15)
ne*
Given that 6% < oo (finite), by taking the limit as n — oo on both
sides of the < sign of (7.15) gives
lim P(|X,, — p| > ¢) =0 forall .
Nn—0o0
Consequently, X, is a consistent estimator of z. This is essentially
the weak law of large numbers. =
27
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7.3 Point Estimation Techniques

e T'wo methods are considered: the method of moments and the
method of maximum likelihood.

e the information in a random sample Xy, Xo,..., X, is used to
make inferences about the unknown 6.

e The observed values of the random sample are denoted x1, 9, .. ., 2.
e Further, a random sample X1, Xo, ..., X, is referred to with the
boldface X the observed values in a random sample z1, z9, ... .2,

with the boldface x.
e The joint pdf of X7, Xo, ..., X, is given by
F(x16) = flar, 2, ..., 2al6)
n
= [(@1]6) x f(x2|0) x -+ x flanl0) =[] flxil6).

i=1

(7.17)
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7.2.3.1 Method of Moments Estimators

e Theidea behind the method of moments is to equate population
moments about the origin to their corresponding sample moments,
where the 7P sample moment about the origin, denoted
my, 18 delined as

my=—Y X! (7.18)

and subsequently to solve for estimators of the unknown parameters.

e Recall that the rth population moment about the origin of a random
variable X denoted e, was defined as F [X".

o It follows that o = E [X"] = 372 2TP(X = ;) for discrete X,
and that o = F [X"] = [%_ 2" f(z) dz for continuous X

29
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e Specifically, given a random sample X, Xo, ..., X, from a population

with pdf f(x]61,69,...,0}), the method of moments estimators,
denoted é,- for i = 1,...,k are found by equating the first k
population moments about the origin to their corresponding sample
moments and solving the resulting system of simultaneous equations
given in Equation (7.19).

( (Y](Hl. v «9;‘.) =m
as(f,...,0L) =mpo

! : : (7.19)

op(0y,...,0,) = my
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Example 7.10 Given a random sample of size n {rom a Bin(1, 7)
population, find the method of moments estimator of 7.
Solution: The first sample moment m2; is X and the first population
moment about zero for the binomial random variableis o) = £ [X '} =
| - m. By equating the first population moment to the first sample
moment,

o(m) =7 E X =my,

which implies that the method of moments estimator for 7, is 7 =
X. =

3

9/30/2019
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Example 7.11 Given a random sample of size m from a Bin(n, )
population, find the method of moments estimator of 7.
Solution: The first sample moment m is X and the first population
moment about zero for the binomial random variableis o = E [Xl] =
n - w. By equating the first population moment to the first sample
moment,

ay(m) =nm TX= my,

which implies that the method of moments estimator for 7, is 7 =

i

7. =2
3
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Example 7.12 Given a random sample of size n from a Pois( )
population, find the method of moments estimator of A.
Solution: The first sample moment m is X and the first population
moment about zero for a Poisson random variable is oy = F [ ‘{l} =
A. By equating the first population moment to the first sample
moment,
set <=
am)=A= X =mj.
which implies that the method of moments estimator for A, is A =
X. .
N

9/30/2019
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Example 7.13 Given a random sample of size n from a N{(u, o)

. v v . v i)
population, find the method of moments estimators of g and o~

Solution: The first and second sample moments my and mo are
X and %Z:)—l Xf respectively.  The first and second population
moments about zero for a normal random variable are oy = F [X 1] =
pand oy = K [J‘{z} = 02—0—;1.2. By equating the first two population
moments to the first two sample moments,

(&1(;.1.(72) = [l g my

9 9. 9setlxs po (7.20)
ag(p, 0%} = 0"+ p° = ;Z X, =my.
i=1

Solving the system of equations in (7.20) yields i = X and 02 =

D 2 2 . . '
L~ | X7 — X7 = 57 as the method of moments estimators for p

n 1=
2 .
and o~ respectively. .
34
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Example 7.14 Given a random sample of size n from a Gamma(a, \)
population, find the method of moments estimators of & and A.

Solution: E[X] = %, and the var [X] = %

for a random variable X that follows a gamma distribution. The
TS : . . Y 1 2
first and second sample moments my and mg are X and =30 | X
respectively. The first and second population moments for a gamma
random variable are

and

9/30/2019
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By equating the first two population moments to the
first two sample moments,
o
(o, A} = g my
A
a(140) u 1 (7.21)
+ ) set
oy = A Lym s
i=1
Tl PR . 2 Z ( i X' VS 1
When it is recalled that S;; = —in— the sysLem of equations
in (7.21) can be solved to obtain & = £ and A = —; as the method
of moments estimators for «v and A re::pectnelv u
36
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7.3.2 Likelihood and Maximum Likelihood Estimators

When sampling from a population described by a pdf f(z|#), knowledge
of 8 provides knowledge of the entire population. The idea behind
maximum likelihood is to select the value for @ that makes the observed
data most likely under the assumed probability model.

When z1,29,...,2n

are the observed values of a random variable X from a population
with parameter #, the notation L(f|x) = f(x]#) will be used to
indicate that the distribution depends on the parameter &, and x to
indicate the distribution is dependent on the observed values from
the sample. Once the sample values are observed, L(#|x) can still be
evaluated in a formal sense, although it no longer has a probability
interpretation (in the discrete case) as does (7.17).

9/30/2019
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L(8|x) is the likelihood function of 8 for x and is denoted by
T

L(BIx) = f(x|6) = [/ (wilo) = f(2116) x f(2216) x - x [(an|6).
i=1

(7.22)

The key difference between (7.17) and (7.22) is that the joint pdf given
in (7.17) is a function of x for a given 8 and the likelihood function
given in (7.22) is a function of 8 for given x.

The value of # that maximizes L(6|x) is called the maximum
likelihood estimate (mle) of . Another way to think of the
mle is the mode of the likelihood function. The maximum likelihood
estimate is denoted as B(X) and the maximum likelihood estimator

(MLE), a statistic, as H(X}

3
T
LOG-LIKELIHOOD VS LIKELIHOOD s

In general, the likelihood function may
be difficult to manipulate, and it is usually more convenient to work
with the natural logarithm of L(#|x), called the log-likelihood
function, since it converts products into sums. Finding the value #
that maximizes the log-likelihood function (In L(#|x)) is equivalent
to finding the value of @ that maximizes L(#|x) since the natural
logarithm is a monotonically increasing function. If L(f]x) is differentiable
with respect to 8, a possible mle is the solution to
d(In L(6]x))

= 0. (7.23
06 )
L <- logL <- NULL; par (mfrow=c(1,2));

n <- 10; mus <- seq(0,10,length=100); mu <- 5; x <- rnorm(n,mean=mu);

Like <- function(mu, data=x) {prod(dnorm(x,mean=mu)) }

logLike <- function(mu, data=x) {sum(dnorm(x,mean=mu,log=TRUE)) }

max.L <- optim(l, Like, data=x, control=list (fnscale=-1))
# max.L <- optim(l, Like, data=x, control=list(fnscale=-1), method="Brent",lower=0,upper=10)
max.logL <- optim(l, logLike, data=x, control=list (fnscale=-1))

for (i in l:length(mus)) {L[i] <- Like(mus[i], x); logL[i] <- logLike (mus[i], x)}
plot (mus, L, type="1"); abline(v=max.LS$par, col=2)
plot (mus, logL, type="1"); abline (v=max.logL$par, col=2)

39
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NOTE:

Note that a possible mle is the solution to (7.23). A possible solution
is used since a solution to (7.23) is a necessary but not sufficient
condition for the solution to be a maximum. Since the solution to
(7.23) could be a local or global minimum, a local or global maximum,
or a point of inflection. Recall that stationary points where,

9% (In L(8]x))

L 724

indicate some type of maximum either local or global. Further, the
solution to (7.23) does not include points on the boundaries of the
parameter space. Consequently, when evaluating the maximum of
L{6|x), the boundaries of the parameter space © as well as solutions
to (7.23) must be evaluated.

40
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Example 7.15 Given a random sample of size n taken from a
Bernoulli(r) distribution, compute the maximum likelihood estimate
and maximum likelihood estimator of the parameter 7.

Solution: According to Box (?77), the pdf for X ~ Bernoulli(rw)
is

P(X =zl7) = 7°(1 — x)} 77,

where @ takes on the value 1 with probability 7 and 0 with probability
1 — 7. The likelihood function for the n observed values is

T
Lin|x) = Hﬂ'mi(l — )l
i=1

47
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Taking the natural logarithm of the likelihood function gives
n n
In L{m[x) = In Hﬂxi(l —mii| = Z In |:1T$£(1. . W)I_Ii]
=1 i=1

= Z [zilnm + (1 —2;) In(1 — 7)) (7.25)
i=1

To find the value that maximizes (7.25), take the first-order partial
derivative of In L(m|x) with respect to 7 and set the answer equal to
Zero.

dln L(rw|x) B S _n= S set

or T 1—m

=~
(S
(=]
p—

42
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noo
The solution to (7.26) is 7 = ;ﬁli = 2. Form = z to be a
maximum, the second-order partial derivative of the log-likelihood

function must be negative at m = 2. The second-order partial derivative

PhnLixlx) —SP e n-Y0w

on? w2 (1—m)2

1S

Evaluating the second-order partial derivative at @ = & yields
O InL(n|x) —nz (n—nz) n n

or? 2 (1-z)? oz 1-a
which is less than zero since 0 <z <1 and n > (. Finally, since the
values of the likelihood function at the boundaries of the parameter
space, m = Jand w = 1, are 0, it follows that = = Z is the value that
maximizes the likelihood function. The maximum likelihood estimate
7(x) =  and the maximum likelihood estimator 7(X) = X. .
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Example 7.16 [> MLFEs with S: Oriental Cockroaches
<1 A laboratory is interested in testing a new child friendly pesticide
on Blatta orientalis (oriental cockroaches). The scientists from the
lab apply the new pesticide to 81 randomly selected Blatta orientalis
oothecae (eggs). The results from the experiment are stored in the
data frame Roacheggs in the variable eggs. A zero in the variable
eggs indicates that nothing hatched from the egg while a 1 indicates
the birth of a cockroach. Assuming the selected Blatta orientalis
eggs are representative of the population of Blatta orientalis eggs,
estimate the proportion of Blatta orientalis eggs that result in a
birth after being sprayed with the child friendly pesticide. Use either
nlm() in R or nlmin() in S-PLUS to solve the problem iteratively
and to produce a graph of the log-likelihood function.

44
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Solution: Note that whether or not a Blatta orientalis egg hatches
is a Bernoulli trial with unknown parameter 7. Using the maximum
likelihood estimate from Example 7.15 on page 59, 7(x) = 2 = 0.21.

» library (PASWR)

» attach (Roacheggs)
» mean (eggs)

[1] 0.2098765

Both R and S-PLUS have iterative procedures that will minimize
a given function. The minimization function in R is nlm(), while
the minimization function in S-PLUS is nlmin(). The required
arguments for both functions are £ () and p where £ () is the function
to be minimized and p is a vector of initial values for the parameter(s).

Since both nlm() and nlmin() are minimization procedures and
finding a maximum likelihood estimate is a maximization procedure,
the functions nlm () and nlmin () on the negative of the log-likelihood
function are used. . . . ...

49
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» p <- seqg(0.1, 0.9, 0.001)

» negloglike <- function (p) {- (sum(eggs) *log (p)+sum(l-eggs) *log (1-p)) }

» nlm(negloglike, 0.2)

Sminimum

[1] 41.61724

Sestimate

[1] 0.209876

» par (pty = "s")

» p <- seqg(0.1, 0.9, 0.001)

» plot(p, - negloglike(p), type = "1", ylab = "L",col=6,lwd=3)

» abline (v = mean(eggs), col = 13, 1lwd = 3)

¢4

In Lin|x)
100 80
H

120
1

140
f

Figure 7.3: Nlustration of the In L:v. x) function for Example 7.16 4
MARQUETTH
UNIVERSITY
MORE ON OPTIMIZATION IN R B Th Diftrence.

The function optimize (), available in both R and S-PLUS, approximate
a local optimum of a continuous univariate function (f) within a given
interval. The function searches the user provided interval for either a
minimum (default) or maximum of the function £. To solve Example
» loglike <- function(p) { (sum(eggs) *log (p)+sum(l-eggs)*log(l-p))}

» optimize (f=loglike,interval=c(0,1),maximum=TRUE)
Smaximum

[1] 0.2098906

Sobjective

[1] -41.61724

» optim(0.5,negloglike)
Spar

[1] 0.2098633

Svalue

[1] 41.61724

» optim(0.5,loglike,control=1list (fnscale=-1))
Spar

[1] 0.2098633

Svalue

[1] -41.61724
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Example 7.17 Let X, X9, ..., X}, be a random sample from a
Bin(n, ) population. Compute the maximum likelihood estimator
and the maximum likelihood estimate for the parameter w. Verify
your answer with simulation by generating 1,000 random values from
a Bin(n = 3,7 = 0.5) population.

Solution: The likelihood function is

L(w|x) = H (;) (1 — )

1=1
- (n)vrfl(l — )" T X X ( " )ﬂ'wm(] — ),
T I'm
(7.27)

and the log-likelihood function is

m
InLiz|x) =In ] (;z) (1
1

i=1
4
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and the log-likelihood function is
m n i
In L(7|x) = In i1 — )t
b 1o | T[ (1 )e0 )
=1 |
m n b
In L(r|x) = In il — )"
i) = (2 )a"i1 - )
1=1 -
m n
= Z [lu <> +z;lnTt+(n—z;)In(1 —7)|. (7.28)
i=1 o
Next, look for the value that maximizes the log-likelihood function
by taking the first-order partial derivative of (7.28) and setting the
answer to zero.
m mo_..
Oln L(7|x) N dis T mn— 3 it *t (7.29)
on s l—m
219
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I :

TF 3 107 2 1S — — = = Y = = £
lhelbolutlon to (7.29) is « o = For = n to‘be a
maximuni, the second-order partial derivative of the log-likelihood
function must be negative at @ = %. The second-order partial

derivative is

9% 1In L(7|x) o imwi mn =3

on? 72 (1—7)?

Evaluating the second-order partial derivative at 7 = = and using the
. : : moo.. 5 v a
substitution > /", 2; = ma yields

#InLirlx)  mz mn—mz
2 T2 (1 -1y
o & (-3
9 N 2 2
mn=  m(n—x) mn mn
- — - — = — < 0.
z (n—x) T n—x
ng

Finally, since the values of the likelihood function at the boundaries
of the parameter space, 7 = 0 and w = 1, are 0, it follows that 7 = £
is the value that maximizes the likelihood function. The maximum

likelihood estimate 7(x) = £ and the maximum likelihood estimator
n

#(X)=2Z

n’ B 5
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Example 7.18 Let X, Xo,..., X, be a random sample from
a Pois(A) population. Compute the maximum likelihood estimator
and the maximum likelihood estimate for the parameter A. Verify
your answer with simulation by generating 1,000 random values from
a Pois(A = 5} population.

Solution: The likelihood function is
" o= A\Ti

n -
A\ A
L) =] E’T e M5 (7.30)

P i—1

and the log-likelihood function is

n )\I{ n n
InL(Ax) =In [e™™ H =—nA+ Z ziln A — Z In(az;!).
i=1

!
i=1"" i=1

(7.31)
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Next, look for the value that maximizes the log-likelihood function
by taking the first-order partial derivative of (7.31) and setting the
answer to zero.

d1n L(\|x) 21T set -
L — s 7 2
N T 0 (7.32)

The solution to (7.32) is A = # = 2. For A = z to be a
maximum, the second-order partial derivative of the log-likelihood
function must be negative at A = z. The second-order partial derivative
s
?In L(Ajx) i
a2

52
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Evaluating the second-order partial derivative at A = & vields
9% In L(A|x) nx n_4
@ T
Finally, since the values of the likelihood function at the boundaries of
the parameter space, A = 0 and A = oo, are 0, it follows that A = &
is the value that maximizes the likelihood function. The maximum
likelihood estimate A(x) = # and the maximum likelihood estimator
MX) = X.
To simulate A(x) = Z, generate 1,000 random values from a Pois(A =
5) population.
> set.seed(99)
> mean(rpois(1000, 5))
(1] 5.073
|
o
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Example 7.19 A box contains five pieces of candy. Some of the
candies are alcoholic, and some are not. In an attempt to estimate
the proportion of alcoholic candies, a sample of size n = 3 is taken
with replacement which results in (a, a, n) (two alcoholic candies and
one nonalcoholic candy). Write out the maximum likelihood function
and use it to select the maximum likelihood estimate of 7, the true
proportion of alcoholic candies.

. - . 2 5 .
Solution: The possible values for 7 are % % %1 g % and % Since

there is at least one alcoholic candy and there is at least one nonalcoholic
candy, the values 7 = 0 and 7 = 1 must be ruled out. In this case,

the observed sample values are x=(a, a, n). The likelihood function
is
Lin|x) = f(x|m)

— flalm) % f(al) x f(n]).
54
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Box |7 | L(w|a, a, n)
414 4.1 _ 16
aadall | = | 5°5°5 = 125
13]3 3 2_ 18
aaalnil 5/5°5°5= 195
1202 2 3 12
aanlrn (5 . EE = 105
anmmn | £ | L. L. 4 4
Since the value 7 = % maximizes the likelihood function, consider
7(x) = % to be the maximum likelihood estimate for the proportion
of candies that are alcoholic. "
o
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Example 7.20 [> General MLE <] The random variable X
can take on the values 0, 1, 2, and 3 with probabilities P(X = 0) = P,
PX = 1) = (1 —p)p*, P(X =2) = (1 —p)% and P(X = 3) =
2p(1 — p) where 0 < p < 1.

(a) Do the given probabilities for the random variable X satisfy the
conditions for a probability distribution of X7

(b) Find the maximum likelihood estimate for p if a random sample
of size n = 150 resulted in a 0 twenty-four times, a 1 fifty-four
times, a 2 thirty-two times, and a 3 forty times.

(¢) Graph the log-likelihood function and determine its maximum
using either the function nlmin() or the function n1lm().

Solution: The answers are;

5
e
SOLUTION: Be The Difference.
(a) For the distribution of X to be a valid pdf, it must satisfy the
following two conditions.
(1) plz) = 0 for all z.
()5, plx) = 1
Condition (1) is satisfied since 0 < p < 1. Condition (2) is also
satisfied since
Zp =p’+(1—p)p° + (1—p)*+2p(1 - p)
3 2 2
—p +p —p'+1+p —2p+2p—2p° =1
(b) The likelihood function is
2 54 5132 ,
Lok = |@4)] " [0 =pp?] " [0 2] 2000 - )"
2 L—p)>,
57
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and the log-likelihood function is
In[L(p|x)] = 40In2 + 2201lnp + 158 In(1 — p). (7.33)

Next, look for the value that maximizes the log-likelihood function
by taking the first-order partial derivative of (7.33) with respect to p
and setting the answer equal to zero.
Aln[L(p|x 220 158 ¢
On[Liplx)] 220 158 0. (7.34)
dp p 1l—p
The solution to (7.34) is p = 0.38. In order for p = 0.58 to be a
maximum, the second-order partial derivative of (7.33) with respect
to p must be negative. Since,
0 In [L(r|x 220 158
OhnlLmp)] _ 220 18 forallp,
Op* p* (1—p) |
this value is a global maximum. Therefore, the maximum likelihood
estimate of p, p(x) = 0.58.

58

SOLUTION CONT’D: MARQUETTH

Be The Difference.
(c) Generic S code to graph the log-likelihood function depicted in
Figure 7.4 on the following page follows.
» par(pty = "s")
> p <- seq(0.01, 0.99, 0.001)
» negloglike <-
function (p) {-40 * log(2) - 220 * log(p) - 158 * log(l - p)}
» plot(p, -negloglike(p), type = “1", col = 6, lwd = 3)
» abline(v = 0.58, col = 13, lwd = 3)
To compute the maximum of the log-likelihood function, use the
command nlmin(loglike, 0.001) with S-PLUS and the command

nlm(negloglike, 0.001) with R.

-400
1

» nlm(negloglike, 0.001) # R
Sminimum

[1] 229.1760

Sestimate

[1] 0.58201

In Lip|x)
600
i

800
1

1000
1

T T T T T T
00 0z oo0s 08 10

Figure 7.4: Hlustration of the In L{p|x) function for Example 7.20. 54|
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Example 7.21 A farmer cans and sells mild and hot peppers at
the local market. The farmer recently hired an assistant to label
his products. The assistant is new to working with peppers and has
mislabelled some of the hot peppers as mild peppers. The farmer
performs a random check of 100 of the mild pepper cans labelled by
the assistant to assess his work. Out of the 100 cans labelled mild
peppers, it turns out that 8 are actually hot peppers.

(a) Which of the following proportions, 0.05, 0.08, or 0.10, maximizes
the likelihood function?

(b) What is the maximum likelihood estimate for the proportion of
cans the assistant has mislabelled?

Solution: The answers are:

MARQUETTH
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SOLIJTION: Be The Difference.

(a) First define the random variable X as the number of mislabeled
cans. In this definition of the random variable X | it follows that n =
100 and m = 1 since X ~ Bin(100,8). The likelihood function for a
random sample of size m from a Bin(n, 7) population was computed

in (7.27) as
T\ o
Lim|x) = H o )7 i1 —m)t ",
b

=1
Since m = 1 here, it follows that the likelihood function is
L(r|x) = (2) (1l —m)" %

Consequently, the value for 7 that maximizes

P(X =8|r) = (120) 7. (1 —m)%

is the solution to the problem. The likelihoods for the three values of

T are
61
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00
LY = 8[0.05) = ( ) (1—0.05)% = 0.0648709,

P(X = 8]0.08) = ( )o 08%- (1 —0.08)" = 0.1455185,

and
100

P(X = 8[0.10) = ( <

)0.108 (1= 0.10)" = 0.1148230.

Conclude that the value m# = 0.08 is the value that maximizes the
likelihood function among the three values of 7 provided.

(b) Recall that the maximum likelihood estimator for a binomial

m )
distribution was computed in Example as #(X) = Lﬁtﬂ

Therefore, the maximum likelihood estimate for the proportion
of mislabeled cans is 7(x) = % = (.08, ]

62
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Example 7.22 > [.I1.D. Uniform Random Variables <
Suppose { X1, Xo,..., X} is a random sample from a Unif (0,8)
distribution. Find the maximum likelihood estimator of 4. Find the
maximum likelihood estimate for a randomly generated sample of

1,000 Unif (0, 3) random variables.

Solution: According to Box (?7), the pdf of a random variable
X ~ Unif(0,6) is

1
flz|8) = 7 0<x<d.

The likelihood function is
Lofor0<2 <0,0<a9<6,...,0< 2, <0
L(le) _ gﬁ —. 1 = — &L =Yy = 4 =
0 otherwise.
In this problem, the standard calculus approach fails since the maximum
of the likelihood function occurs at a point of discontinuity. Consider
the graph in Figure 7.5 on the following page.
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Clearly E% is maximized for small values of 8.

However, the likelihood function is only defined for # > max(z;).
Specifically, if 8 < max(x;), L(8]x) = 0. It follows

then that the maximum 111{('111100(1 estimator is #(X) = max(X;).
The following code finds the maximum likelihood estimate of 1,000
randomly generated Unif(0,3) random variables.

> set.seed(2)

> max (runif (1000, 0, 3))

[1] 2.998667

Thus, even though a standard calculus approach could not be used,
the mle 2.998667 is quite good for § = 3. ]

L{|x)

max{z;) f
Figure 7.5: Mustration of the likelihood function in Example 7.22 (Y
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Example 7.23 Suppose {X1,Xo,..., Xp} is a random sample

from a N(u, o) distribution, where ¢ is assumed known. Find the
maximum likelihood estimator of .

Solution: According to Box 77 on page 77, the pdf of a random
variable X ~ N{u, o) is

1 _{:z‘—,ujlg
i 207 —o0 <z <00,
vV 2ro?

The likelihood function is

fx) =

n (2;—1)2
Lt = T S0 H \/__ R~ e

and the log-likelihood function is

]
—
\
|
—
=
|
-—
=
-
[Sw]
—_
1
2
(=2}
Nt

In Lip|x) = 7% In(27) — %ln(g" 0?2
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To find the value of g that maximizes In L(p|x), take the first-order
partial derivative of (7.36) with respect to p, set the answer equal to
zero, and solve. The first-order partial derivative of In L(p|x) with
respect to p is

Oln Ly, 0%x) 37 (2i — 1) set

. = 0. 7.37
A o2 (7.37)

‘ N ) 2R TR )
The solution to (7.37) is p = === = 2. For p = z to be a
maximum, the second-order partial derivative of the log-likelihood

function with respect to ¢ must be negative at pp = . The second-order

partial derivative of (7.36) is
2
O°In L{p/x) n
—_— = —— < 0. 7.38
op? o? ( )
Since (7.35), goes to zero at +00, the boundary values, it follows that
p = T is a global maximum. Consequently, the maximum likelihood
estimator of p is i(X) = X, and the maximum likelihood estimate

of pis fi(x) = . .
66
MARQUETTH
UNIVERSITY
Be The Difference.
Example 7.24 Suppose {X1,Xo,..., Xp} is a random sample
from a N(u,o) distribution, where g is assumed known. Find the
maximum likelihood estimator of .
Solution: According to Box 77 on page 77, the pdf of a random
variable X ~ N(pu, o) is
1 7(2‘7;1@2
flz) = —e 2?  —oo <z <00,
' V2ro?
The likelihood function is
o fln- [l
L(o®|x) = [] f(a:) = e, (7.39)
2
i=1 i Vemo
and the log-likelihood function is
n 2
. n n . oy
In L(c?|x) = —=In(27) — =In(c?) — Lﬁ” (7.40)
2 2 207
N
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To find the value of o2 that maximizes In L( ‘\x) take the first-order
partial derivative of (7.40) with respect to o2, set the answer equal to
zero, and solve. The first-order partial derivative of In L(a?|x) with
respect to o? is

Oln Ly, o?|x) __ S (g — ) set

da? 202 204

7 V2 n 2
m . . 7 1\ Ly — - 2 G—1 Ly — L
I'he solution to (7.41) is 0= = El—l({—;” For o = ZE—I(T;"!J to
be a maximum, the second-order partial derivative of the log-likelihood
i : 2 : 2 2
function with respect to o“ must be negative at o° = si. Ior

notational ease, let » = o2 in (7.40) so that

n 2
. n n — [
In L(r|x) = In L(0?|x) = -5 In(27) — 5 In(r)y — %’l)
2 Z 2T
(7.42)
6
, MARQUETTH
SOLUTION CONT’D: UNI\’ERS%Y
Be The Difference.
The second-order partial derivative of (7.42) is
&”In L(r|x) _o ? o
Multiplying the left hand side of (T.43) by 7 gives
n T 9
’ 2 =
5" Z(J:2 —p)° < 0. (7.44)
i=1
N )2
By substituting the value for the mle, r = —EJ(;LE—‘“) the 7 above
the < can be removed since
n 2
7 (i —p ‘
<Zg_1( 1 )(} :O__)_:T,'
2 n
Since (7.39), goes to zero at £oo, the boundary values; if, follows that
n
o? —LM isa OIObal maximum. Consequently, the maximum
likelihood estimator of o is 2 ( )= M , and the maximum
likelihood estimate of o is 02(x) = E“l# 0 N
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Example 7.25 Use random.seed(33) to generate 1,000 N (4, 1)
random variables. Write log-likelihood functions for the simulated
random variables and verify that the simulated maximum likelihood
estimates for g and o2 are reasonably close to the true parameters.
Produce side by side graphs of In L(u|x) and In L(¢?|x) indicating
where the simulated maximum occurs in each graph.

Solution: The code provided is for R. To have the given code
function in S-PLUS, replace the function nlm() with nlmin().

» par (mfrow = c(1, 2))
n <- 1000; sigma <- 1; set.seed(33); x <- rnorm(

> n, 4, sigma)
» mu <- seq(2, 6, length
>

n)
negloglikemu <- function (mu) {
n/2 * log(2*pi) + n/2 * log(sigma”2) +

(sum (x"2) - 2*mu*sum(x) + n*mu”2)/(2*sigma”2)
}

» EM <- nlm(negloglikemu, 2)Sestimate

» EM

» [1] 4.019708

MARQUETTH
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R CODE CONT’D: Be The Difference.
» mul <- 4
» negloglike <- function(sigma2) {
n/2 * log(2*pi) + n/2 * log(sigma2) +
(sum((x - mul)”"2))/(2 * sigma2)
}
» ES <- nlm(negloglike, 0.5)Sestimate
» ES
[1] 1.000426

Note that the maximum likelihood estimates for i and ¢ from the
simulation are 4.019708 and 1.000426 respectively which are reasonably
close to the parameters p = 4 and ¢ = 1.

Code for graph of In L(u|x) versus

» plot(mu, -negloglikemu(mu), type="n")
» lines (mu, -negloglikemu (mu), lwd=2)
» abline(v = EM, lty = 2)

7]
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Code for graph of In L(¢?[x) versus o2

» sigma2 <- seqg(0.5, 1.5, length = 1000)

» plot(sigma2, -negloglike(sigma2), type="n")
» lines(sigma2, -negloglike (sigma2), lwd=2)
» abline(v = ES, 1lty=2)

1450
1

2

In L{”|x}
-1500

In Liulx)

-1550

-3500 -3000 -2500 -2000 -1500
1

Figure 7.6: Hlustration of In L{ux) and In L{c?|x)
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7.3.2.3 Properties of Maximum Likelihood Estimators
Now that the Fisher information has heen examined and several
problems have been worked with maximum likelihood estimation, the
properties of maximum likelihood estimators are formally enumerated:

1. MLEs are not necessarily unbiased. For example, when sampling )
from a N(pt, o) population, the MLE of 0% is 02(X) = 3_, (Ktr—:'u)d
which is a biased estimator of 2. However, although some MLEs
may be biased, all MLLEs are consistent which makes them asymptoticall
unbiased. Symbolically, MLEs #- unbiased estimators; however,
MLEs = asymptotically unbiased estimators since MLIs = consistent

[S]

AT is a MLE of 8 and g is any function, then g(7") is the MLE
of g(#). This is known as the invariance property of MLEs. For
example, if X is the MLE of 8, then X2 is the MLE of 6%
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PROPERTIES OF MLE’S CONT’D:

3. When certain regularity conditions on f(x|d) are satisfied, and an
efficient estimator exists for the estimated parameter, the efficient
estimator is the MLE of the estimated parameter. Be careful, not
all MLEs are efficient! However, il an eflicient estimator exists, the
efficient estimator is also the MLE. That is, efficiency = MLE, but
MLE - efficiency necessarily.

4. Under certain regularity conditions on f(x]@), the MLE 0(X) of 6
based on a sample of size n from f(z|6) is asymptotically normally
distributed with mean 8, and variance I-Q(Q)_l_ That is as n — o0,

6(X) ~ N (9, \/In(éf)—l) . (7.51)

The statement in (7.51) is the basis for large sample hypothesis
tests (covered in Chapter ??) and confidence intervals (covered in
Chapter 77).

74
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Note that the asymptotic variance of MLEs equals the Cramér-Rao
lower bound since they are asymptotically efficient. That is, MLEs
= asymptotic elliciency. Consequently, a reasonable approximation
to the distribution of H(X) for large sample sizes can be obtained.
However, a normal distribution for #(X) cannot be guaranteed

when the sample size is small.

Example 7.28 In Example 7.17 on page 68, it was found that the
sample proportion of successes for a random sample of size m from
m .
a Bin(n, ) distribution had 7 = _ﬂ%}aﬁ for its mle. That is, the
mooy.
MLE for the binomial proportion 7 is 7(X) = % What is the
MLE for the variance of the sample proportion of successes where the
i

random variable 7 is defined as %7
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Solution: Given that X ~ Bin(n,m), the variance of X is nm(1 —
7). Therefore,

1=

moy. m o var [X (] — (1
var (7] = var [ i=1 E] . pvar (X mnar(1—7)  w(1 ‘ﬂ'}.

mn m2n? m2n? mn
Since var [ is a function of the MLE 7(X), it follows using the
invariance property of MLEs that the MLE of the variance of 7 is
. (1l —7
ar[#(X)] = g
mn

Note: Many texts will list the MLE of the variance of the sample

: . VTR 1—#
proportion of successes in a binomial distribution as w because
they use m = 1 in their definition of 7. n
7
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Example 7.29 > MOM and MLE for a Gamma<] Given
a random sample of size n from a population with pdf
i T _x
f(x]8) = 72 7, x>0, 0>0,
(a) Find an estimator of € using the method of moments.
(b) Find an estimator of & using the method of maximum likelihood.
(¢) Are the method of moments and maximum likelihood estimators
of # unbiased?
(d) Compute the variance of the MLE of 6.
(e) Is the MLE of 6 efficient?
Solution: Since X ~ Gamma ((‘t =2, A= —{L) according to Box
(??) E[X] = § = 26 and var[X] = {5 = 26°.
]
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(a) Equating the first population moment about the origin to the first
oment about the origin gives

sample m
an Set -
20 = X = my,
g X
2

ay(f) =2

which implies that the method of moments estimator for € is § =

(b) The likelihood equation is given as
T =3y
L(#]x) = H flag) = 'Hj}? Lol % —== (7.52)

and the log-likelihood function is
n i T
In L(0|x) = —2nIn(d) + In (z;) — &=l 7.53
(6]x) O)+ 3 In(z) - = (7.53)
i=1
7!
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To find the value of 8 that maximizes In L(6]x), take the first-order
partial derivative of (7.53) with respect to 0, sel the answer equal to
zero, and solve. The first-order partial derivative of In L(f]x) with
respect to 6 is

oML 2 Y @i -

o 0 '

I'he solution to (7.54) is # = 4§ which agrees with the method of
moments estimator. However, to ensure that ¢ = —;i-' Is a maximuin,
the second-order partial derivative with respect to @ must be negative
I'he second-order partial derivative of (7.53) is

FPInLBx) 2n ‘)Z,_l 0.
ar 2 <

9/30/2019
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By using # = ; in (7.55} arrive at the expression

8n 7 .
- — <0 (7.56)
Lt -t oep . 0,
['he 7 above the < in (7.56) can be removed since ‘]“ fle)dz =
0 = X > 0. Finally since (7.52) goes to zero as § — oo, it can
he concluded that € = —}' is a global maximum. Consequently, the
maximum likelihood estimator of 4 is 6 (X)) = —1-){

(¢) Since both the method of moments and the method of maximum
likelihood returned the same estimator for 8, that is 8 (X} = 6 = —?
the question is

E[0(X)] = E[8] L 6.
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Both # and 8 (X)) are therefore unbiased estimators since

X] Y EX] n-20

= =4.
2 2n 2n

E[0(X)] =E[8] =FE [
(d) The variance of the MLE of 8 is

: X PoXi] nvar[X]  n26® 62
var [9 (X)] = var [—] = var [Z’_] l} = LX] _ =

2 on 1n? in?  2n

(e) For #(X) = X {0 be considered an efficient or minimum variance
estimator of 8, the variance of %E must equal the CRLB. That is, does

2 ]

var[8 (X)] = — = ?
X n | (oI f(x]0)\?
n- U ( 0 )

B

b

5]
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Since f(x]d) = Hifz(e*?; forz > 0,and 8 > 0, it follows that In f(z|0) =
dln flz|f)  ¢—20

Inz —2In6 — 4, and that —7—= = —F. Consequently,
1 1 1 I
0 - - = o
n-FE d1n f(X]6) 2 E X204 2 n-var|.X n-262 an
1 B _(E_ n-H _HE_ H,] Hl
and conclude that —; is an efficient estimator of 6. .

52
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Example 7.30 > MLEs for Exponentials<| Givenarandom
sample of size n from an exponential distribution with pdf
. 1 _z W
flz) = 5(! 7 x>0, 0>0, (7.57)
(a) Find the MLE of 62
(b) Show that the MLE of 62 is a biased estimator of 62,
(¢) Provide an unbiased estimator of 62.
(d) Find the variance of your MLE of 62.
(e) Find the variance of your unbiased estimator of 62.

9/30/2019

42



MARQUETTH

UNIVERSITY

Be The Difference.

Solution: To find the MLE of 6’2, there are two possibilities. First,
the MLE of @ could be found and the invariance property could be
used to say that this estimate squared is the MLE of 2. (See problem
?7? of this chapter.) Second, and this is the current approach, the MLE
of 62 can be found directly.

5 . . . 9
(a) For notational ease, use the change of variable 6= = p, and 6 = |/p
in (7.57). The resulting pdf using the change of variable is

R
flx)=—=e V? >0, p>0.

/P

The likelihood function is

n 1 oy - _Z“ &3
L(plx)—H./’(sm)—H\%" Ve W (05
i=1

i=1
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and the log-likelihood function is
n
n 1T -
In L(p|x) = —=Inp — ==L2 (7.59)
To find the value of p that maximizes In L(p|x), take the first-order
partial derivative of (7.59) with respect to p, set the answer equal to
zero, and solve. The first-order partial derivative of In L(p|x) with
respect to p is
Oln L(p|x n ¥ % B
— i) __» —Zf—§ L0, (7.60)
dp 2p op?
The solution to (7.60) is p = Z°. For p = Z° to be a maximum,
the second-order partial derivative of the log-likelihood function with
respect to p must be negative at p = z°. The second-order partial

84
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derivative of (7.59) is

9% In L(p|x) on 3Y gy i() (76
dp= 2p= flpf
By substituting p = &% in the right hand side of (7.61), the 7
the < can be removed since & < % because & > 0 for any sample
due to the fact that P(X = 0) = 0 for any continuous distribution.
Finally, since as p — oo, L(p|x) — 0, it can be concluded that the
)

o~

MLE of p = 6% is p(X) = 62(X) = X°.

above

(b) Next, show that X2 is a biased estimator of #2. The easiest way to
determine the mean and variance of X° is with moment generating
functions. It is known that the moment generating function of an
exponential random variable, X, is My (t) = (1—6t)~". Furthermore,
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if Y = 3" ¢;X; and each X; has a moment generating function
My (t), then the moment generating function of Y is My (1) =

T -
, . - . ¢
[T My (cit). In the case where ¥ = X = 2471_* each ¢; =

,Il}. For the special case of the exponential, the moment generating

function for X is

n —1 .

i=1

- . - 2 .

['hus, to calculate the mean and variance of X~ take the first through
fourth derivatives of Mx(¢) and evaluate them when ¢ = 0 to find
E[Ei‘] for i = 1,2,3 and 4. The first, second, third, and fourth
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derivatives of M~(1) respectively are
, 7 —n—1 0
Mx(t) = —n (] — ;!) (_ 7_;)
" 6 —n—2 0
M Y B —py — - _ Y v
My(t) = 6(—n —1) (l ”z‘) ( ”)
mo o 0*n+1) ONTTE 0
My(t) = ———(-n—2) [ 1 ——1 - —
' X( ) n (=n } ( n ) i)
3 ’ 9 —n—4
ﬂ[%})(ﬂ _ f (?? + 1‘))(71 + -}(_” . 3) (] _ ﬁf) (_ E)
' n- n n

Evaluating these derivatives at ¢ = 0 gives the expected values of X
to the first, second, third, and fourth powers.

8
MARQUETTH
bt e
/ —
Mx(0) =6 =E [X]
0%(n+1 -
My(0) = Fn+l) _ g[x?]
‘ n
L Bn+D(n+2 3
My = Lot Vn+2) _ prss)
n*
) i n+1)(n+2)(n+3 _
A[%)(()) _ (n )(71 ;‘_ )(n )) _ E[‘Xrl]
¢ n’
A o1 Pn+1) , L, < ;
Since E[Xz] = L £ 62, X2 is a biased estimator of 62,
n
: X2
(¢) An unbiased estimator of 62 would be to use the quantity %
89
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— _ — 2
(d) The variance of X“) can be computed as EL‘{I] — (E[Xz}) .

var [)& -
n- i

2] 0'(n +1)(n+2)(n+3) (9—’(71 + '1))2

204(2n?% + 5n + 3)

na
201 ((2n + 3)(n + 1)
= ( 3 ) (7.62)
n
9
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(¢) The variance of the unbiased estimator of 62 is
2 2
nx n- —9
var = Svar L‘i “J
n+1 (n+ 1}
n? ‘26’4((‘271 +3)(n+ 1))
(n+ 1)2 n?
26*(2n + 3)
on(n+1)
9]
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QUESTIONS?

* ANY QUESTION?

a7



