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Based on

e Monte Carlo Statistical Methods,
Christian Robert and George Casella,
2004, Springer-Verlag

e Programming in R (available as a free download from
http://www.r-project.org

e Also WinBugs, available free from
http://www.mre-bsu.cam.ac.uk/bugs/

e R programs for the course available at
http://www.stat.ufl.edu/ casella/mcsm/
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Introduction

e Statistical Models

e Likelihood Models

e Bayesian Models

e Deterministic Numerical Models

e Simulation vs. Numerical Methods
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1.1 Statistical Models
e In a typical statistical model we observe

e The distribution of the sample is given by the product,

the likelihood function .

T o).

i=1
e Inference about 6 is based on this likelihood.

e In many situations the likelihood can be complicated
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Example 1.1: Censored Random Variables

o If
X1 NN(Q,O'Q), X2NN(H’7p2)7

e the distribution of Y = min{ Xy, X5} is
o p
{1 I(y—u)]x(jlqs(y—@)’
p o

where ® and ¢ are the cdf and pdf of the normal distribution.

e This results in a complex likelihood.
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Example 1.2: Mixture Models

e Models of mixtures of distributions:
X ~ f; with probability p;,
for j =1,2,..., k, with overall density
X ~pifi(@) + -+ prfilz) .

For a sample of independent random variables (X1, -, X,,), sample den-
sity

H (pfi(a) + -+ pefu(z)} -

e Expanding this product involves k™ elementary terms: prohibitive to com-
pute in large samples.
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Example 1.2 : Normal Mixtures

e For a mixture of two normal distributions,

PN (11, 7%) + (1 = p)N(0,07) |

e The likelihood proportional to

ﬁ [pT 90( T_“)Hl—p)a‘lw(%;e)]

=1

containing 2" terms.

e Standard maximization techniques often fail to find the global maximum
because of multimodality of the likelihood function.
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#This gives the distribution of the mixture of two normals#
e<-.3; nsim<-1000;m<-2;s<-1;

u<-(runif (nsim)<e) ;z<-rnorm(nsim)

z1<-rnorm(nsim,mean=m, sd=s)

#This plots histogram and density#

hist (u*z+(1-u)*z1l,xlab="x",x1lim=c(-5,5) ,freqg=F,
col="green" ,breaks=50,)

mix<-function(x)e*dnorm(x)+(1-e)*dnorm(x,mean=m,sd=s)

xplot<-c(-50:50)/10

par (new=T)
plot(xplot,mix(xplot), xlim=c(-5,5),type="1",yaxt="n",ylab="")
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Figure 1: Histogram and density of normal mixture
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1.2: Likelihood Methods

e Maximum Likelihood Methods

o For aniid sample X, ..., X, from a population with density f(x|fy,...,0),
the likelthood function is

LOx) = L(by,....0020, ... 20)
= Hizlf(xilﬁl,...,ék).

o Global justifications from asymptotics

10
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Example 1.9: Student’s ¢ distribution

e Reasonable alternative to normal errors is Student’s t distribution, de-
noted by
7 (p,6,0)
[4

more “robust” against possible modelling errors
e Density of 7 (p, 8, 0) proportional to

—0)? —(p+1)/2
ot (1 + —(:1: ) )

po?

11
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Example 1.9: Student’s ¢ distribution

e When p known and 6 and o both unknown, the likelihood
n2tl - (xl — ‘9)2
o2 E (1 + —p02 ) .

may have n local minima.

e Each of which needs to be calculated to determine the global maximum.

12
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e [llustration of the multiplicity of modes of the likelihood from a Cauchy
distribution C(0,1) (p = 1) when n = 3 and X; = 0, X3 = 5, and X3 = 9.

13
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Section 1.3 Bayesian Methods

e In the Bayesian paradigm, information brought by

o the data z, realization of
X ~ f(«l0),

o combined with prior information specified by prior distribution with
density 7(6)

14
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Bayesian Methods

e Summary in a probability distribution, 7(6|z), called the posterior dis-
tribution

e Derived from the joint distribution f(z|0)m (), according to

 Haloy(®)
"0) = T rzo) 0@

[Bayes Theorem]

e where
m(z) = / F(@l0)r(0)d0

is the marginal density of X

15
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Example 1.11: Binomial Bayes Estimator

e For an observation X from the binomial distribution Binomial(n, p) the
(so-called) conjugate prior is the family of beta distributions Beta(a, b)

e The classical Bayes estimator 07 is the posterior mean

I'(a+b+n)

1
- r+a—1 1 — nf:p+b71d
F(a+x)F(n—Jc+b)/Opp (1-p) P

B n (£>—|— a—+b a
 a+4+b+n\n a+b+n\a+bd)

e A Biased estimator of p

16
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The Variance/Bias Trade-off

e Bayes Estimators are biased
e Mean Squared Error (MSE) = Variance + Bias?
o MSE = E(6™ — p)?

o Measures average closeness to parameter

e Small Bias T can yield large Variance |.

- n x a+0b a
Foo (%)
a+b+n\n a+b+n\a+b

Vard™ = (ﬁ)z\/ar (%)

17
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Conjugate Priors

e A prior is conjugate if
7(0)(the prior) and 7(0|x)(the posterior)
are in the same family of distributions.

e Examples

o m(f) normal , 7(f|x) normal

o () beta, w(f|z) beta
e Restricts the choice of prior
e Typically non-robust

e Originally used for computational ease

18
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Example 1.13: Logistic Regression

e Standard regression model for binary (0 — 1) responses: the logit model
where distribution of Y modelled by

exp(z'3)

P(Y=1)=p= et

e Equivalently, the logit transform of p, logit(p) = log[p/(1 — p)], satisfies
logit(p) = x'(.

e Computation of a confidence region on [ quite delicate when 7(3|x) not
explicit.

e In particular, when the confidence region involves only one component of
a vector parameter, calculation of 7(f|x) requires the integration of the
joint distribution over all the other parameters.

19
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Challenger Data

e In 1986, the space shuttle Challenger exploded during take off, killing the
seven astronauts aboard.

e The explosion was the result of an O-ring failure.

Flight No. |14 9 23 10 1 5 13 15 4 3 8 17
Failure 1 1.1 1 O O O O O O 0 O
Temp. 53 57 58 63 66 67 67 67 68 69 70 70

Flight No. | 2 11 6 7 16 21 19 22 12 20 18
Failure 11 0 O O 1 O O O 0 O
Temp. 0 70 72 73 75 75 76 76 78 79 81

e It is reasonable to fit a logistic regression, with p = probability of an
O-ring failure and x = temperature.

20
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o The left panel shows the average logistic function and variation

o The middle panel shows predictions of failure probabilities at 65° Fahren-
heit

o The right panel shows predictions of failure probabilities at 45° Fahren-
heit.
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