Hands-on: Accelerating k-NN with Rcpp

Overview

In this 30 min session you will:

1. Download and inspect the C4++ implementation for k-NN.

2. Compile and load the Rcpp code.

3. Run benchmarks comparing pure-R vs Repp predictions.

4. Analyze how sample size and dimensionality affect performance.

Setup
Download the C++ and helper scripts into your working directory:

curl -0 https://raw.githubusercontent.com/mmadoliat/WSoRT/refs/heads/main/src/knn_pred.cpp
curl -0 https://raw.githubusercontent.com/mmadoliat/WSoRT/refs/heads/main/runthis.R
Open the files in your editor to review the code:

o knn_ pred.cpp contains the knn_pred_cpp () function (Repp).
o runthis.R sources both R and C++ implementations and runs microbenchmark().

1. Compile the C++ code

In an R console or RStudio, run:

10

11

Rcpp: :sourceCpp("knn_pred.cpp")

If successful, you should see knn_pred_cpp available:

1s("package:base") # confirm knn_pred_cpp is loaded
[1] "knn_pred_cpp"

2. Inspect the runner script

Open runthis.R, which contains:

source("R/knn_s3_formula.R") # loads knn_s3 and predict()
Rcpp: :sourceCpp("src/knn_pred.cpp") # loads Rcpp function

Simulate data and benchmark
data <- simulate_knn_data(n = 1000, p = 5, m = 200, k = 10)
mb <- microbenchmark: :microbenchmark(
Rcpp = knn_pred_cpp(data$train_x, data$train_y, data$test_x, data$k),

R = knn_pred_R(data$train_x, data$train_y, data$test_x, data$k),
times = 20

)

print (mb)

Try running this script:

source("runthis.R")

3. Vary parameters

Modify runthis.R or re-run interactively to examine different settings:

o Increase n (training size) from 1000 to 5000 or 10000.
 Increase p (dimensions) from 5 to 20 or 50.
e Observe how the Rcpp version scales relative to pure-R.

Focus on how the Rcpp implementation stays much faster as complexity grows.

4. Discussion

e Where does Rcpp help most?
o Are there settings where pure R is sufficient?
o How might you further optimize (e.g., using STL partial sort)?

Next steps

e Try integrating this into your knn_s3 class and Shiny app.
o Explore parallel Repp implementations (OpenMP).
o Consider other statistical routines with nested loops.

	Overview
	Setup
	1. Compile the C++ code
	2. Inspect the runner script
	3. Vary parameters
	4. Discussion
	Next steps

