
Hands-on: Accelerating k-NN with Rcpp

Overview

In this 30 min session you will:

1. Download and inspect the C++ implementation for k‑NN.
2. Compile and load the Rcpp code.
3. Run benchmarks comparing pure-R vs Rcpp predictions.
4. Analyze how sample size and dimensionality affect performance.

Setup

Download the C++ and helper scripts into your working directory:

1 curl -O https://raw.githubusercontent.com/mmadoliat/WSoRT/refs/heads/main/src/knn_pred.cpp
2 curl -O https://raw.githubusercontent.com/mmadoliat/WSoRT/refs/heads/main/runthis.R

Open the files in your editor to review the code:

• knn_pred.cpp contains the knn_pred_cpp() function (Rcpp).
• runthis.R sources both R and C++ implementations and runs microbenchmark().

1. Compile the C++ code

In an R console or RStudio, run:

1



1 Rcpp::sourceCpp("knn_pred.cpp")

If successful, you should see knn_pred_cpp available:

1 ls("package:base") # confirm knn_pred_cpp is loaded
2 # [1] "knn_pred_cpp"

2. Inspect the runner script

Open runthis.R, which contains:

1 source("R/knn_s3_formula.R") # loads knn_s3 and predict()
2 Rcpp::sourceCpp("src/knn_pred.cpp") # loads Rcpp function
3

4 # Simulate data and benchmark
5 data <- simulate_knn_data(n = 1000, p = 5, m = 200, k = 10)
6 mb <- microbenchmark::microbenchmark(
7 Rcpp = knn_pred_cpp(data$train_x, data$train_y, data$test_x, data$k),
8 R = knn_pred_R(data$train_x, data$train_y, data$test_x, data$k),
9 times = 20

10 )
11 print(mb)

Try running this script:

1 source("runthis.R")

3. Vary parameters

Modify runthis.R or re-run interactively to examine different settings:

• Increase n (training size) from 1000 to 5000 or 10000.
• Increase p (dimensions) from 5 to 20 or 50.
• Observe how the Rcpp version scales relative to pure-R.

Focus on how the Rcpp implementation stays much faster as complexity grows.

2



4. Discussion

• Where does Rcpp help most?
• Are there settings where pure R is sufficient?
• How might you further optimize (e.g., using STL partial_sort)?

Next steps

• Try integrating this into your knn_s3 class and Shiny app.
• Explore parallel Rcpp implementations (OpenMP).
• Consider other statistical routines with nested loops.

3


	Overview
	Setup
	1. Compile the C++ code
	2. Inspect the runner script
	3. Vary parameters
	4. Discussion
	Next steps

