MATH 4750 / MSSC 5750

Instructor: Mehdi Maadooliat

Probability Review

Department of Mathematical and Statistical Sciences

WHAT IS STATISTICS?

- The field of statistics can be divided into two main branches.
- **Descriptive statistics** is what most people think of when they hear the word *statistics*. It includes the collection, presentation, and description of sample data.
- The term **inferential statistics** refers to the technique of interpreting the values resulting from the descriptive techniques and making decisions and drawing conclusions about the population.

POPULATION VS. SAMPLE

- **Population:** The entire group of interest
- **Sample:** A part of the population selected to draw conclusions about the entire population

WHAT IS STATISTICS?

- Describing a Population
 - It is common practice to use Greek letters when talking about a population.
 - We call the mean of a population μ .
 - We call the standard deviation of a population σ and the variance σ^2 .
 - It is important to know that for a given population there is only one true mean and one true standard deviation and variance or one true proportion.
 - There is a special name for these values: parameters.

WHAT IS STATISTICS?

- Describing a Sample
 - We call the mean of a sample \overline{x} .
 - We call the standard deviation of a sample *s* and the variance *s*².
 - There are many different possible samples that could be taken from a given population. For each sample there may be a different mean, standard deviation, variance, or proportion.
 - There is a special name for these values: **statistics**.

POPULATION VS SAMPLE

• We use sample statistics to make inference about population parameters

WHAT IS STATISTICS?

• Data The set of values collected from the variable from each of the elements that belong to the sample.

WHAT IS STATISTICS?

- **Qualitative (Categorical) variable:** A variable that describes or categorizes an element of a population.
 - **Nominal variable:** A qualitative variable that characterizes an element of a population. No ordering. No arithmetic.
 - **Ordinal variable:** A qualitative variable that incorporates an ordered position, or ranking.
- **Quantitative (Numerical) variable:** A variable that quantifies an element of a population.
 - **Discrete variable:** A quantitative variable that can assume a countable number of values. Gap between successive values.
 - **Continuous variable:** A quantitative variable that can assume an uncountable number of values. Continuum of values.

TYPES OF VARIABLES

Examples:

Variable	Numeric		Categorical	
	Discrete	Continuous	Nominal	Ordinal
Weight		X		
Hours Enrolled	X			
Major			X	
Zip Code			X	

1. INTRODUCTION: COMBINATIONAL METHODS

THEOREM 1.1. If an operation consists of two steps, of which the first can be done in n_1 ways and for each of these the second can be done in n_2 ways, then the whole operation can be done in $n_1 \cdot n_2$ ways.

THEOREM 1.2. If an operation consists of k steps, of which the first can be done in n_1 ways, for each of these the second step can be done in n_2 ways, for each of the first two the third step can be done in n_3 ways, and so forth, then the whole operation can be done in $n_1 \cdot n_2 \cdot \ldots \cdot n_k$ ways.

THEOREM 1.3. The number of permutations of *n* distinct objects is *n*!.

THEOREM 1.4. The number of permutations of n distinct objects taken r at a time is

$$_{n}P_{r}=\frac{n!}{(n-r)!}$$

Be The Difference.

THEOREM 1.6. The number of permutations of *n* objects of which n_1 are of one kind, n_2 are of a second kind, ..., n_k are of a kth kind, and $n_1 + n_2 + \cdots + n_k = n$ is

$$\frac{n!}{n_1! \cdot n_2! \cdot \ldots \cdot n_k}$$

THEOREM 1.7. The number of combinations of n distinct objects taken r at a time is

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

for r = 0, 1, 2, ..., n.

THEOREM 1.9.

$$(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r$$
 for any positive integer *n*

2. PROBABILITY

DEFINITION 2.1. SAMPLE SPACE. The set of all possible outcomes of an experiment is called the **sample space** and it is usually denoted by the letter S. Each outcome in a sample space is called an **element** of the sample space, or simply a **sample point**.

2.4 PROBABILITY OF AN EVENT

Be The Difference.

POSTULATE 1	The probability of an event is a nonnegative real number;
	that is, $P(A) \ge 0$ for any subset A of S.
POSTULATE 2	P(S) = 1.
POSTULATE 3	If A_1, A_2, A_3, \ldots , is a finite or infinite sequence of mutually exclusive events of S, then
P	$A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$

THEOREM 2.3. If A and A' are complementary events in a sample space S, then

$$P(A') = 1 - P(A)$$

THEOREM 2.4. $P(\emptyset) = 0$ for any sample space S.

THEOREM 2.7. If A and B are any two events in a sample space S, then

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

THEOREM 2.8. If A, B, and C are any three events in a sample space S, then $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$ $-P(B \cap C) + P(A \cap B \cap C)$

CONDITIONAL PROBABILITY -INDEPENDENT EVENTS - BAYES RULE

DEFINITION 2.5. INDEPENDENCE. Two events A and B are independent if and only if

 $P(A \cap B) = P(A) \cdot P(B)$

DEFINITION 2.4. CONDITIONAL PROBABILITY. If A and B are any two events in a sample space S and $P(A) \neq 0$, the conditional probability of B given A is

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

THEOREM 2.12. If the events $B_1, B_2, ..., and B_k$ constitute a partition of the sample space S and $P(B_i) \neq 0$ for i = 1, 2, ..., k, then for any event A in S

$$P(A) = \sum_{i=1}^{k} P(B_i) \cdot P(A|B_i)$$

THEOREM 2.13. If B_1, B_2, \ldots, B_k constitute a partition of the sample space S and $P(B_i) \neq 0$ for $i = 1, 2, \ldots, k$, then for any event A in S such that $P(A) \neq 0$

$$P(B_r|A) = \frac{P(B_r) \cdot P(A|B_r)}{\sum_{i=1}^{k} P(B_i) \cdot P(A|B_i)}$$

3. PROBABILITY DISTRIBUTIONS AND PROBABILITY DENSITIES

DEFINITION 3.1. RANDOM VARIABLE. If S is a sample space with a probability measure and X is a real-valued function defined over the elements of S, then X is called a **random variable**.[†]

Probability Distributions (Discrete Random Variables)

DEFINITION 3.2. PROBABILITY DISTRIBUTION. If X is a discrete random variable, the function given by f(x) = P(X = x) for each x within the range of X is called the **probability distribution** of X.

THEOREM 3.1. A function can serve as the probability distribution of a discrete random variable X if and only if its values, f(x), satisfy the conditions

- **1.** $f(x) \ge 0$ for each value within its domain;
- 2. $\sum_{x} f(x) = 1$, where the summation extends over all the values within its domain.

DEFINITION 3.3. DISTRIBUTION FUNCTION. If X is a discrete random variable, the function given by

$$F(x) = P(X \le x) = \sum_{t \le x} f(t)$$
 for $-\infty < x < \infty$

where f(t) is the value of the probability distribution of X at t, is called the **distribution function**, or the **cumulative distribution** of X.

3.3 CONTINUOUS RANDOM VARIABLES

Be The Difference.

DEFINITION 3.4. PROBABILITY DENSITY FUNCTION. A function with values f(x), defined over the set of all real numbers, is called a **probability density function** of the continuous random variable X if and only if

$$P(a \le X \le b) = \int_a^b f(x) dx$$

for any real constants a and b with $a \leq b$.

THEOREM 3.4. If X is a continuous random variable and a and b are real constants with $a \leq b$, then

$$P(a \le X \le b) = P(a \le X < b) = P(a < X \le b) = P(a < X < b)$$

THEOREM 3.5. A function can serve as a probability density of a continuous random variable X if its values, f(x), satisfy the conditions[†]

1.
$$f(x) \ge 0$$
 for $-\infty < x < \infty$;
2. $\int_{-\infty}^{\infty} f(x) dx = 1$.

DEFINITION 3.5. DISTRIBUTION FUNCTION. If X is a continuous random variable and the value of its probability density at t is f(t), then the function given by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt \quad \text{for } -\infty < x < \infty$$

is called the distribution function or the cumulative distribution function of X.

3.5 MULTIVARIATE DISTRIBUTIONS DISCRETE CASE

DEFINITION 3.6. JOINT PROBABILITY DISTRIBUTION. If X and Y are discrete random variables, the function given by f(x, y) = P(X = x, Y = y) for each pair of values (x, y) within the range of X and Y is called the **joint probability distribution** of X and Y.

THEOREM 3.7. A bivariate function can serve as the joint probability distribution of a pair of discrete random variables X and Y if and only if its values, f(x, y), satisfy the conditions

- **1.** $f(x, y) \ge 0$ for each pair of values (x, y) within its domain;
- 2. $\sum_{x} \sum_{y} f(x, y) = 1$, where the double summation extends over all possible pairs (x, y) within its domain.

DEFINITION 3.7. JOINT DISTRIBUTION FUNCTION. If X and Y are discrete random variables, the function given by

$$F(x,y) = P(X \le x, Y \le y) = \sum_{s \le x} \sum_{t \le y} f(s,t) \quad \text{for } -\infty < x < \infty$$
$$-\infty < y < \infty$$

where f(s, t) is the value of the joint probability distribution of X and Y at (s, t), is called the **joint distribution function**, or the **joint cumulative distribution** of X and Y.

3.5 MULTIVARIATE DISTRIBUTIONS CONTINUOUS CASE

DEFINITION 3.8. JOINT PROBABILITY DENSITY FUNCTION. A bivariate function with values f(x, y) defined over the xy-plane is called a **joint probability density** function of the continuous random variables X and Y if and only if

$$P(X,Y) \in A = \iint_{A} f(x,y) dx dy$$

for any region A in the xy-plane.

THEOREM 3.8. A bivariate function can serve as a joint probability density function of a pair of continuous random variables X and Y if its values, f(x, y), satisfy the conditions

1.
$$f(x, y) \ge 0$$
 for $-\infty < x < \infty$, $-\infty < y < \infty$;
2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$.

DEFINITION 3.9. JOINT DISTRIBUTION FUNCTION. If X and Y are continuous random variables, the function given by

$$F(x,y) = P(X \le x, Y \le y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(s,t) \, ds \, dt \qquad \text{for } -\infty < x < \infty, \\ -\infty < y < \infty$$

where f(s, t) is the joint probability density of X and Y at (s, t), is called the **joint** distribution function of X and Y.

3.6 MARGINAL DISTRIBUTION

Be The Difference.

DEFINITION 3.10. MARGINAL DISTRIBUTION. If X and Y are discrete random variables and f(x, y) is the value of their joint probability distribution at (x, y), the function given by

$$g(x) = \sum_{y} f(x, y)$$

DEFINITION 3.11. MARGINAL DENSITY. If X and Y are continuous random variables and f(x, y) is the value of their joint probability density at (x, y), the function given by

$$g(x) = \int_{-\infty}^{\infty} f(x, y) \, dy$$
 for $-\infty < x < \infty$

3.7 Conditional Distribution

DEFINITION 3.12. CONDITIONAL DISTRIBUTION. If f(x, y) is the value of the joint probability distribution of the discrete random variables X and Y at (x, y) and h(y) is the value of the marginal distribution of Y at y, the function given by

$$f(x|y) = \frac{f(x,y)}{h(y)} \qquad h(y) \neq 0$$

DEFINITION 3.13. CONDITIONAL DENSITY. If f(x, y) is the value of the joint density of the continuous random variables X and Y at (x, y) and h(y) is the value of the marginal distribution of Y at y, the function given by

$$f(x|y) = \frac{f(x,y)}{h(y)} \qquad h(y) \neq 0$$

19

4. MATHEMATICAL EXPECTATION

Be The Difference.

DEFINITION 4.1. EXPECTED VALUE. If X is a discrete random variable and f(x) is the value of its probability distribution at x, the **expected value of X** is

$$E(X) = \sum_{x} x \cdot f(x)$$

Correspondingly, if X is a continuous random variable and f(x) is the value of its probability density at x, the **expected value of X** is

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

THEOREM 4.1. If X is a discrete random variable and f(x) is the value of its probability distribution at x, the expected value of g(X) is given by

$$E[g(X)] = \sum_{x} g(x) \cdot f(x)$$

Correspondingly, if X is a continuous random variable and f(x) is the value of its probability density at x, the expected value of g(X) is given by

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f(x) \, dx$$

THEOREM 4.2. If a and b are constants, then

$$E(aX+b) = aE(X) + b$$

BIVARIATE CASE

Be The Difference.

THEOREM 4.4. If X and Y are discrete random variables and f(x, y) is the value of their joint probability distribution at (x, y), the expected value of g(X, Y) is

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) \cdot f(x,y)$$

Correspondingly, if X and Y are continuous random variables and f(x, y) is the value of their joint probability density at (x, y), the expected value of g(X, Y) is

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, dx \, dy$$

Moments

DEFINITION 4.2. MOMENTS ABOUT THE ORIGIN. The **rth moment about the origin** of a random variable X, denoted by μ'_r , is the expected value of X'; symbolically

$$\mu'_r = E(X^r) = \sum_x x^r \cdot f(x)$$

for $r = 0, 1, 2, \dots$ when X is discrete, and

$$\mu'_r = E(X^r) = \int_{-\infty}^{\infty} x^r \cdot f(x) dx$$

when X is continuous.

MOMENTS ABOUT THE MEAN

Be The Difference.

DEFINITION 4.3. MEAN OF A DISTRIBUTION. μ'_1 is called the **mean** of the distribution of X, or simply the **mean of X**, and it is denoted simply by μ .

DEFINITION 4.4. MOMENTS ABOUT THE MEAN. The rth moment about the mean of a random variable X, denoted by μ_r , is the expected value of $(X - \mu)^r$, symbolically

$$\mu_r = E\left[(X-\mu)^r\right] = \sum_x (x-\mu)^r \cdot f(x)$$

for r = 0, 1, 2, ..., when X is discrete, and

$$\mu_r = E\left[(X-\mu)^r\right] = \int_{-\infty}^{\infty} (x-u)^r \cdot f(x) dx$$

when X is continuous.

DEFINITION 4.5. VARIANCE. μ_2 is called the variance of the distribution of X, or simply the variance of X, and it is denoted by σ^2 , σ_x^2 , var(X), or V(X). The positive square root of the variance, σ , is called the standard deviation of X.

THEOREM 4.6.

$$\sigma^2 = \mu_2' - \mu^2$$

THEOREM 4.7. If X has the variance σ^2 , then

$$\operatorname{var}(aX+b) = a^2 \sigma^2$$

4.4 CHEBYSHEV'S THEOREM

Be The Difference.

THEOREM 4.8. (*Chebyshev's Theorem*) If μ and σ are the mean and the standard deviation of a random variable X, then for any positive constant k the probability is at least $1 - \frac{1}{k^2}$ that X will take on a value within k standard deviations of the mean; symbolically,

$$P(|x-\mu| < k\sigma) \ge 1 - \frac{1}{k^2}, \quad \sigma \neq 0$$

• Moment Generating Functions

DEFINITION 4.6. MOMENT GENERATING FUNCTION. The moment generating function of a random variable X, where it exists, is given by

$$M_X(t) = E(e^{tX}) = \sum_x e^{tX} \cdot f(x)$$

when X is discrete, and

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} \cdot f(x) dx$$

when X is continuous.

Theorem 4.9.
$$\left. rac{d^r M_X(t)}{dt^r}
ight|_{t=0} = \mu_r'$$

INDEPENDENT RANDOM VARIABLES

Be The Difference.

DEFINITION 3.14. INDEPENDENCE OF DISCRETE RANDOM VARIABLES. If $f(x_1, x_2, ..., x_n)$ is the value of the joint probability distribution of the discrete random variables $X_1, X_2, ..., X_n$ at $(x_1, x_2, ..., x_n)$ and $f_i(x_i)$ is the value of the marginal distribution of X_i at x_i for i = 1, 2, ..., n, then the n random variables are **independent** if and only if

 $f(x_1, x_2, \ldots, x_n) = f_1(x_1) \cdot f_2(x_2) \cdot \ldots \cdot f_n(x_n)$

for all $(x_1, x_2, ..., x_n)$ within their range.

THEOREM 4.12. If X and Y are independent, then $E(XY) = E(X) \cdot E(Y)$ and $\sigma_{XY} = 0$.

THEOREM 4.13. If X_1, X_2, \ldots, X_n are independent, then

$$E(X_1X_2\cdot\ldots\cdot X_n)=E(X_1)\cdot E(X_2)\cdot\ldots\cdot E(X_n)$$

THEOREM 4.14. If X_1, X_2, \ldots, X_n are random variables and

$$Y = \sum_{i=1}^{n} a_i X_i$$

where a_1, a_2, \ldots, a_n are constants, then

$$E(Y) = \sum_{i=1}^{n} a_i E(X_i)$$

and

$$\operatorname{var}(Y) = \sum_{i=1}^{n} a_i^2 \cdot \operatorname{var}(X_i) + 2 \sum_{i < j} a_i a_j \cdot \operatorname{cov}(X_i X_j)$$

24

COVARIANCE(X,Y)

• $\operatorname{var}[aX \pm bY] = a^2 \operatorname{var}[X] + b^2 \operatorname{var}[Y] \pm 2ab \operatorname{cov}[X, Y],$

where
$$cov[X, Y] = E\{(X - E[X])(Y - E[Y])\}\$$

= $E[X, Y] - E[X], E[Y]$

Conditional Expectation

DEFINITION 4.10. CONDITIONAL EXPECTATION. If X is a discrete random variable, and f(x|y) is the value of the conditional probability distribution of X given Y = y at x, the conditional expectation of u(X) given Y = y is

$$E[u(X)|y)] = \sum_{x} u(x) \cdot f(x|y)$$

Correspondingly, if X is a continuous variable and f(x|y) is the value of the conditional probability distribution of X given Y = y at x, the **conditional expectation** of u(X) given Y = y is

$$E[(u(X)|y)] = \int_{-\infty}^{\infty} u(x) \cdot f(x|y) dx$$

Be The Difference.

- Discrete Uniform (Wiki)
- Bernouli(Wiki)
- **Binomial (Wiki)**
- <u>Negative Binomial(Wiki)</u>
- <u>Geometric(Wiki</u>)
- <u>Hypergeometric(Wiki</u>)
- <u>Poisson (Wiki</u>)
- Multinomial(<u>Wiki</u>)
- Multivariate Hypergeometric Distribution

CHAPTER 6. COMMON CONTINUOUS DISTRIBUTIONS:

- Uniform
 - <u>Wiki</u>
- Exponential
 - <u>Wiki</u>
- <u>Gamma</u>
 - <u>Wiki</u>
- <u>Beta</u>
 - <u>Wiki</u>
- <u>Weibull</u>
 - <u>Wiki</u>
- Cauchy
 - <u>Wiki</u>

- Normal (μ =mean, σ^2 =variance)
 - <u>Wiki</u>
- Bivariate Normal (Wiki)
- <u>Skew Normal (Wiki)</u>
- <u>t</u> (*ν*=df)
 - <u>Wiki</u>
- **<u>Chi-Square</u>** (ν =df)
 - <u>Wiki</u>
- $\underline{\mathbf{F}}(\nu_1 = \mathbf{df_1}, \nu_2 = \mathbf{df_2})$ - <u>Wiki</u>

7. FUNCTIONS OF RANDOM VARIABLES

• 7.2 Distribution Function Technique

A straightforward method of obtaining the probability density of a function of continuous random variables consists of first finding its distribution function and then its probability density by differentiation. Thus, if X_1, X_2, \ldots, X_n are continuous random variables with a given joint probability density, the probability density of $Y = u(X_1, X_2, \ldots, X_n)$ is obtained by first determining an expression for the probability

 $F(y) = P(Y \le y) = P[u(X_1, X_2, \dots, X_n) \le y]$

• 7.3 Transformation Technique: One Variable

THEOREM 7.1. Let f(x) be the value of the probability density of the continuous random variable X at x. If the function given by y = u(x) is differentiable and either increasing or decreasing for all values within the range of X for which $f(x) \neq 0$, then, for these values of x, the equation y = u(x) can be uniquely solved for x to give x = w(y), and for the corresponding values of y the probability density of Y = u(X) is given by

 $g(y) = f[w(y)] \cdot |w'(y)|$ provided $u'(x) \neq 0$

Elsewhere, g(y) = 0.

7.4 TRANSFORMATION TECHNIQUE: SEVERAL VARIABLES

Theorem 7.1 with the transformation formula written as

$$g(y, x_2) = f(x_1, x_2) \cdot \left| \frac{\partial x_1}{\partial y} \right|$$

or as

$$g(x_1, y) = f(x_1, x_2) \cdot \left| \frac{\partial x_2}{\partial y} \right|$$

where $f(x_1, x_2)$ and the partial derivative must be expressed in terms of y and x_2 or x_1 and y. Then we integrate out the other variable to get the marginal density of Y.

THEOREM 7.2. Let $f(x_1, x_2)$ be the value of the joint probability density of the continuous random variables X_1 and X_2 at (x_1, x_2) . If the functions given by $y_1 = u_1(x_1, x_2)$ and $y_2 = u_2(x_1, x_2)$ are partially differentiable with respect to both x_1 and x_2 and represent a one-to-one transformation for all values within the range of X_1 and X_2 for which $f(x_1, x_2) \neq 0$, then, for these values of x_1 and x_2 , the equations $y_1 = u_1(x_1, x_2)$ and $y_2 =$ $u_2(x_1, x_2)$ can be uniquely solved for x_1 and x_2 to give $x_1 = w_1(y_1, y_2)$ and $x_2 = w_2(y_1, y_2)$, and for the corresponding values of y_1 and y_2 , the joint probability density of $Y_1 = u_1(X_1, X_2)$ and $Y_2 = u_2(X_1, X_2)$ is given by

$$g(y_1, y_2) = f[w_1(y_1, y_2), w_2(y_1, y_2)] \cdot |J|$$

Here, J, called the Jacobian of the transformation, is the determinant

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$

Elsewhere, $g(y_1, y_2) = 0$.

29

7.5 MOMENT-GENERATING FUNCTION TECHNIQUE

Be The Difference.

THEOREM 7.3. If X_1, X_2, \ldots , and X_n are independent random variables and $Y = X_1 + X_2 + \cdots + X_n$, then

$$M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$$

where $M_{X_i}(t)$ is the value of the moment-generating function of X_i at t.

ANY QUESTION?