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OUTLINE
» K-Means Clustering

> Dissimilarity and within-cluster scatter

» Hierarchical clustering
> Agglomerative vs Divisive
> Single linkage
» Complete linkage
> Average linkage
> Centroid linkage
» MiniMax linkage

» Choosing the number of clusters

> Within-cluster variation
> Between-cluster variation
> CHindex
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Be The Difference.
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DON'T CONFUSE CLUSTERING AND 5o The Diforance
CLASSIFICATION!

 In classfication, we have data for which the groups are
known, and we try to learn what differentiates these
groups (i.e., classification function) to properly classify
future data
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 In clustering, we look at data for which groups are
unknown and undefined, and try to learn the groups
themselves, as well as what differentiates them
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DISSIMILARITY AND S

WITHIN-CLUSTER SCATTER e e pierenes

Given observations X, ... X,,, and dissimilarites d(X;, X;). (E.g.,
think of X; € R” and d(X;, X;) = || X; — X;3)

Let K be the number of clusters (fixed). A clustering of points
Xq....X,, is a function C that assigns each observation X; to a

gro;up ked{l,...K}

Notation: C'(i) = k means that X is assigned to group £, and ny
is the number of points in the group k. Also, let d;; = d(X;, X;)

The within-cluster scatter is defined as
K
1 1
k=1 "% C(i)=k, C(j)=Fk

Smaller W is better



SIMPLE EXAMPLE

Here n =5 and K = 2,

X;eR?and d;; = | X; — X513

1 2 3 4 5
1 0 0.25 | 0.98 | 0.52 | 1.09
2 | 0.25 0 1.09 | 0.53 | 0.72
31098 | 1.09 0 0.10 | 0.25
4 | 052 | 053 | 0.10 0 0.17
51109 | 0.72 | 0.25 | 0.17 0

» Red clustering:

Wied = (0.25 4 0.53 + 0.52) /3 + 0.25/2 = 0.56
» Blue clustering:

Whiwe = 0.25/2 4+ (0.10 + 0.17 4+ 0.25) /3 = 0.30

(Tip: dist function in R)

Dimension 2
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Be The Difference.

Dimensian 1
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FINDING THE BEST GROUP ASSIGNMENTS ™" st steence.

Smaller W is better, so why don't we just directly find the
clustering C' that minimizes W7
Problem: doing so requires trying all possible assignments of the n
points into /A groups. The number of possible assignments is

K

1 (KN,
. 1 v

Note that A(10,4) = 34,105, and A(25,4) ~ 5 x 10¥* ... huge

Most problems we look at are going to have way more than n = 25
observations, and potentially more than K = 4 clusters too (but

K = 4 is not unrealistic)

So we'll have to settle for an approximation
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REWRITING THE e

WITHIN-CLUSTER SCATTER

Focus on Euclidean space: now X; € R? and dissimilarities are
d(Xi, X;) = [|Xi — X513

Fact: within-cluster scatter can be rewritten as

DI INERTEDS > -

T
k=1 C(i)=k C(G)=k k=1

with X the average of points in group k, X, = o Z( X;.
The right-hand side above is called within-cluster varlatlon

Hence, equivalently we seek a clustering C' that minimizes the
within-cluster variation (approximately so)
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REWRITING THE MINIMIZATION BeThe Difronce.

Remember: we want to choose ' to minimize

T T | X5 — X3

k=1 C'(

Another fact : for any Z1,...Z,, € R?, the quantity
S Zi— |3 is mlnlmlzed by taking c = Z = " Z;, the

TT?, —
average of the Z;'s

So our problem is the same as minimizing the enlarged criterion

y‘ T HX _CkHir

k=1 C'(

over both clusterings C' and ¢yq,...cx € RP
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K-MEANS ALGORITHM

The K-means clustering algorithm approximately minimizes the
enlarged criterion by alternately minimizing over C' and ¢q,...cx

We start with an initial guess for ¢1,...ck (e.g., pick K points at
random over the range of X,...X,,), then repeat:

1. Minimize over C': for each 7 = 1,...n, find the cluster center
ci. closest to X;, and let C'(7) = k

2. Minimize over ¢y, ...cx: foreach k=1,... K, let ¢ = X,
the average of points in group k£

Stop when within-cluster variation doesn't change

In words:
1. Cluster (label) each point based the closest center

2. Replace each center by the average of points in its cluster
9
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K-MEANS EXAMPLE
Here X; € R%, n =300, and K = 3

Initial centers Iteration 1 lteration 2
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PROPERTIES OF K-MEANS Be The Diforance

» Within-cluster variation decreases with each iteration of the
algorithm. i.e., if W} is the within-cluster variation at iteration
t, then I"i-”rt_;_l S IIrt

» The algorithm always converges, no matter the initial cluster
centers. In fact, it takes < K™ iterations (why?)

» The final clustering depends on the initial cluster centers.
Sometimes, different initial centers lead to very different final
outputs. So we typically run A-means multiple times (e.g., 10
times), randomly initializing cluster centers for each run, then
choose among from collection of centers based on which one
gives the smallest within-cluster variation

» The algorithm is not guaranteed to deliver the clustering that
globally minimizes within-cluster variation (recall: this would
require looking through all possible assignments!)

11
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K-MEANS EXAMPLE, MULTIPLE RUNS
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Here X; € R?, n = 250, and K = 4, the points are not as

well-separated

WCV =243

WCV =18.1
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WCV =259

These are results of result of running the K -means algorithm with
different initial centers (chosen randomly over the range of the
X;'s). We choose the second collection of centers because it yields
the smallest within-cluster variation



FROM K-MEANS TO i MARQUETTE
HIERARCHICAL CLUSTERING e

Recall two properties of K-means (/{-medoids) clustering:

1. It fits exactly K clusters (as specified)

2. Final clustering assignment depends on the chosen initial
cluster centers

Given pairwise dissimilarites d;; between data points, hierarchical
clustering produces a consistent result, without the need to choose
initial starting positions (number of clusters)

The catch: we need to choose a way to measure the dissimilarity
between groups, called the linkage

Given the linkage, hierarchical clustering produces a sequence of
clustering assignments. At one end, all points are in their own
cluster, at the other end, all points are in one cluster
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AGGLOMERATIVE VS DIVISIVE Be The Difronc.

Two types of hierarchical clustering algorithms

Agglomerative (i.e., bottom-up):

» Start with all points in their own group
» Until there is only one cluster, repeatedly: merge the two
groups that have the smallest dissimilarity
Divisive (i.e., top-down):
» Start with all points in one cluster

» Until all points are in their own cluster, repeatedly: split the
group into two resulting in the biggest dissimilarity

Agglomerative strategies are simpler, we'll focus on them. Divisive
methods are still important, but we won't be able to cover them in
lecture



Dimension 2
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SIMPLE EXAMPLE Be TheDitrence

Given these data points, an agglomerative algorithm might decide
on a clustering sequence as follows:

Step 1: {1} {2}, {3}, {4}. {5}. {6}+. {7}
Step 2: {1}.{2,3}, {4}, {5}, {6}. {7}
Step 3: {1.7}.{2,3},{4}.{5}.{6};
Step 4: {1.7}.{2,3},{4.5},{6};

Step 5: {1,7},{2,3,6},{4,5};

Step 6: {1.7}.{2,3.4,5,6};

Step 7: {1,2,3,4,5,6,7}.

Dimension 1

15



Dimension 2
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Be The Difference.

We can also represent the sequence of clustering assignments as a

SIMPLE EXAMPLE CONT...
dendrogram:
10
o | o2 o 3 ro
g los 50
40

02 03 04 05 06 07 08 09

Dimension 1

Height

0.2 0.3 04 0.5 0.6 0.7

0.1

Note that cutting the dendrogram horizontally partitions the data

points into clusters
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WHAT'S A DENDROGRAM? e

Dendrogram: convenient graphic to display a hierarchical sequence
of clustering assignments. This is simply a tree where:

» Each node represents a group

» Each leaf node is a singleton (i.e., a group containing a single
data point)

» Root node is the group containing the whole data set

» Each internal node has two daughter nodes (children),
representing the the groups that were merged to form it

Remember: the choice of linkage determines how we measure
dissimilarity between groups of points

If we fix the leaf nodes at height zero, then each internal node is
drawn at a height proportional to the dissmilarity between its two
daughter nodes
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LINKAGES e The Dironce

Given points X1, ... X, and dissimilarities d;; between each pair
X; and X,. (Think of X; € R” and d;; = || X; — Xj||2; note: this
is distance, not squared distance)

At any level, clustering assignments can be expressed by sets

G = {iy,i2,...4,}, giving indices of points in this group. Let ng
be the size of G (here ng = r). Bottom level: each group looks
like G = {i}, top level: only one group, G = {1,...n}

Linkage: function d(G, H) that takes two groups (-, H and returns
a dissimilarity score between them
Agglomerative clustering, given the linkage:

» Start with all points in their own group

» Until there is only one cluster, repeatedly: merge the two
groups (&, H such that d(G, H) is smallest
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SINGLE LINKAGE Be The Difference.

In single linkage (i.e., nearest-neighbor linkage), the dissimilarity
between (&, H is the smallest dissimilarity between two points in
opposite groups:

dsingle (G, H) = min d;;

i€G,jeH
. . . - o o (J @ D40
Example (dissimilarities d;; are - - o LTRE oo
distances, groups are marked °© % o ©°%0
by colors): single linkage score 7 e
dsingle (G, H ) is the distance of e ®
. T ] ) [%.j (_j@ . 5 jC}
the closest pair DA
N og“’ P
| I I | |
-2 -1 0 1 2
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SINGLE LINKAGE E,X A |\/| PLE Be The Difference.

Here n = 60, X, € R?, d;; = || X; — Xj||2. Cutting the tree at
h = 0.9 gives the clustering assignments marked by colors

0.6

0
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Height
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| l
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| l
je—
|

Cut interpretation: for each point X;, there is another point X in
its cluster with d;; < 0.9
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COMPLETE LINKAGE Be The Difference.

In complete linkage (i.e., furthest-neighbor linkage), dissimilarity
between &, H is the largest dissimilarity between two points in
opposite groups:

Aeomplete (G. H) = max  d;;
plete (G, 1) icG,jed

Example (dissimilarities d;; are - 7
distances, groups are marked
by colors): complete linkage
score deomplete (G, H) is the
distance of the furthest pair

21
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COMPLETE LINKAGE E,X A |\/I PI_E Be The Difference.

Same data as before. Cutting the tree at h = 5 gives the clustering
assignments marked by colors
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Cut interpretation: for each point X;, every other point X; in its
cluster satisfies d;; <5
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AVERAGE LINKAGE Be The Difference.

In average linkage, the dissimilarity between (-, H is the average
dissimilarity over all points in opposite groups:

1
daverage(Gf: H) = [P E dij

Example (dissimilarities d;; are ~
distances, groups are marked
by colors): average linkage - 7
score daverage(G, H) is the av-
erage distance across all pairs

(Plot here only shows dis-
tances between the blue points ’
and one red point) - o |

23
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AVERAGE LINKAGE E,X A |\/| PI_E Be The Difference.

Same data as before. Cutting the tree at h = 2.5 gives clustering
assignments marked by the colors

3.0
I

25

ac
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Height
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| |
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| |
—

Cut interpretation: there really isn't a good one!



SHORTCOMINGS OF SINGLE, COMPLETE  [fff] MARQUETTE
LINKAGE Be The Difference.

Single and complete linkage can have some practical problems:

» Single linkage suffers from chaining. In order to merge two
groups, only need one pair of points to be close, irrespective
of all others. Therefore clusters can be too spread out, and
not compact enough

» Complete linkage avoids chaining, but suffers from crowding.
Because its score is based on the worst-case dissimilarity
between pairs, a point can be closer to points in other clusters
than to points in its own cluster. Clusters are compact, but
not far enough apart

Average linkage tries to strike a balance. |t uses average pairwise
dissimilarity, so clusters tend to be relatively compact and relatively
far apart

25
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Average linkage isn't perfect, it has its own problems:

» |t is not clear what properties the resulting clusters have when
we cut an average linkage tree at given height h. Single and
complete linkage trees each had simple interpretations

» Results of average linkage clustering can change with a
monotone increasing transformation of dissimilarities d;;. i.e.,
if h is such that h(x) < h(y) whenever = < y, and we used
dissimilarites /i(d;;) instead of d;;, then we could get different
answers

Depending on the context, second problem may be important or
unimportant. E.g., it could be very clear what dissimilarities should
be used, or not

Note: results of single, complete linkage clustering are unchanged
under monotone transformations

26



EXAMPLE OF A CHANGE WITH
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Be The Difference.

MONOTONE INCREASING TRANSFORMATION

Avg linkage: distance

Avg linkage: distance”2
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CENTROID LINKAGE e

Centroid linkage! is commonly used. Assume that X; € R?, and
di; = || X; — Xj||2. Let X, Xy denote group averages for G, H.

Then:

deentroid (Gf H) — HXG o XHHQ

Example (dissimilarities d;; are
distances, groups are marked
by colors): centroid linkage -
score deentroid (G, H) is the dis-

tance between the group cen- Y
troids (i.e., group averages) &

'Eisen et al. (1998), “Cluster Analysis and Display of Genome-Wide
Expression Patterns”
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CENTROID LINKAGE EXAMPLE Bo The Dierence

Here n = 60, X; € R?, d;; = || X; — X,||2. Cutting the tree at
some heights wouldn't make sense ... because the dendrogram has
inversions! But we can, e.g., still look at ouptut with 3 clusters

2.5

20

1.5

Height

s
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SHORTCOMINGS OF CENTROID LINKAGE, Ui oniversity

Centroid linkage is simple: easy to understand, and easy to
implement. Maybe for these reasons, it has become the standard

for hierarchical clustering in biology
» Can produce dendrograms with inversions, which really messes

up the visualization

» Even if were we lucky enough to have no inversions, still no
interpretation for the clusters resulting from cutting the tree
» Answers change with a monotone transformation of the
dissimilarity measure d;; = || X; — X/|[2. E.g., changing to
d;; = || X; — X;||3 would give a different clustering

distance distance”2

30
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MINIMAX LINKAGE e

Minimax linkage? is a newcomer. First define radius of a group of
points G around X; as r(X;,G) = max,ec d;;. Then:

Arninimax(G, H) = min r(X;,,GUH)

1€eGUH

Example (dissimilarities d;; are |
distances, groups marked by - S %y o (
colors): minimax linkage score | ©° o |
drminimax (G, H) is the smallest ° ’
radius encompassing all points .
in G and H. The center X, is |
the black point ~ | E

I ‘ “ﬂil | - I |

-2 -1 0 1 2

’Bien et al. (2011), “Hierarchical Clustering with Prototypes via Minimax .
Linkage” ‘
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MINIMAX LINKAGE EXAMPLE s sieos

Same data as before. Cutting the tree at h = 2.5 gives clustering
assignments marked by the colors

0 _
o o
&
cl")_
G_
o ©
e
o
o - _.
od

1
I
2.0

AT Y

Cut interpretation: each point X; belongs to a cluster whose
center X, satisfles d;. < 2.5
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Be The Difference.

» Cutting a minimax tree at a height i a nice interpretation:
each point is < h in dissimilarity to the center of its cluster.
(This is related to a famous set cover problem)

» Produces dendrograms with no inversions

» Unchanged by monotone transformation of dissimilarities d;;

» Produces clusters whose centers are chosen among the data
points themselves. Remember that, depending on the
application, this can be a very important property. (Hence

minimax clustering is the analogy to /X-medoids in the world
of hierarchical clustering)

33
(From Bien et al. (2011))
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LINKAGE SUMMARY e

_ No .Unchanged Cut
Linkage | . -, | with monotone | . . Notes

iInversions' ) interpretation?
transformation?

Single Vv Vv Vv chaining
Complete Vv Vv Vv crowding
Average Vv X X
Centroid X X X simple

- centers are
Minimax v Vv v d .

ata points

Note: this doesn't tell us what “best linkage” is

What's missing here: a detailed empirical comparison of how they
perform. On top of this, remember that choosing a linkage can be
very situation dependent

34



il" MARQUFETITE

UNIVERSITY

HOW MANY CLUSTERS P Be The Difference.

Sometimes, using /K-means, /X-medoids, or hierarchical clustering,
we might have no problem specifying the number of clusters /X
ahead of time, e.g.,

» Segmenting a client database into A clusters for A salesman

» Compressing an image using vector quantization, where K&
controls the compression rate

Other times, K is implicitly defined by cutting a hierarchical
clustering tree at a given height

But in most exploratory applications, the number of clusters A is

unknown. So we are left asking the question: what is the “right”
value of K7

35
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THIS IS A HARD PROBLEM

Determining the number of clusters is a hard problem!

Why is it hard?
» Determining the number of clusters is a hard task for humans

to perform (unless the data are low-dimensional). Not only
that, it's just as hard to explain what it is we're looking for.

Why is it important?
» E.g., it might mean a big difference scientifically if we were
convinced that there were X' = 2 subtypes of breast cancer
vs. K = 3 subtypes

» One of the (larger) goals of data mining/statistical learning is
automatic inference; choosing /K is certainly part of this

36
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REMINDER: WITHIN-CLUSTER VARIATION  semeoiternce

We're going to focus on /K-means, but most ideas will carry over
to other settings

Recall: given the number of clusters /<, the /X\-means algorithm
approximately minimizes the within-cluster variation:

W —7 Y 11X - X513

k=1 C(

over clustering assignments C', where X}, is the average of points
- % 1
in group k, Xip = 7= > i Xi

Clearly a lower value of W is better. So why not just run /X-means
for a bunch of different values of K, and choose the value of K
that gives the smallest W (K)?

37



THAT'S NOT GOING TO WORK

Problem: within-cluster variation just keeps decreasing

Example: n =250, p=2, K =1.,..
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BETWEEN-CLUSTER VARIATION BeTheDiferonce

Within-cluster variation measures how tightly grouped the clusters
are. As we increase the number of clusters K&, this just keeps going
down. What are we missing?

Between-cluster variation measures how spread apart the groups
are from each other:

K

B = Z Nk

k=1

X, — X3

where as before X. is the average of points in group k, and X is
the overall average, i.e.

X, = % > X, and X = %ZX?-
* C(iy=k i=1

39
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EXAMPLE: BETWEEN AND WITHIN e The Difrence
CLUSTER VARIATION

Example: n =100, p =2, K =2
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STII.JI.J NOT GOING TO WORK Be The Difference.

Bigger B is better, can we use it to choose K7 Problem: between-
cluster variation just keeps increasing

Running example: n =250, p =2, K =1,...10
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CH INDEX 5o The Diforance

|deally we'd like our clustering assignments C' to simultaneously
have a small W and a large B

This is the idea behind the CH index.® For clustering assignments
coming from /K clusters, we record CH score:

_ B(E)/(K ~ 1)
W(K)/(n—K)

CH(K)

To choose K, just pick some maximum number of clusters to be
considered K.y (e.g., K = 20), and choose the value of K with

the largest score CH(K), i.e.,

K = argmax CH(K)
KE{Q,,..Kmax}

*Calinski and Harabasz (1974), “A dendrite method for cluster analysis”

42



EXAMPLE: CH INDEX

Running example: n = 250, p =2, K = 2,
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Be The Difference.

350

300
|

N\
\

10

We would choose K = 4 clusters, which seems reasonable

General problem: the CH index is not defined for K’ = 1. We could
|

never choose just one cluster (the null model)
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QUESTIONS? MARQUETTE
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* ANY QUESTION?

44
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