
Instructor: Mehdi Maadooliat

Department of Mathematical and Statistical Sciences

MATH 4750 / MSSC 5750

DEEP LEARNING IN R

FULLY CONNECTED

NEURAL NETWORK

CONVOLUTIONAL

NEURAL NETWORK TUTORIAL

DEEP LEARNING: MYTHS AND TRUTHS

2

■ Deep learning is often presented as algorithms that

“work like the brain”, that “think” or “understand”.

Reality is however quite far from this dream

■ AI: the effort to automate intellectual tasks normally

performed by humans.

■ ML: Could a computer surprise us? Rather than

programmers crafting data-processing rules by hand,

could a computer automatically learn these rules by

looking at data?

CLASSICAL PROGRAMMING VS

MACHINE LEARNING

3

RECIPES OF A MACHINE LEARNING ALGORITHM

■ Input data points, e.g.
– if the task is speech recognition, these data points could be sound

files of people speaking

– If the task is image tagging, they could be picture files

■ Examples of the expected output
– In a speech-recognition task, these could be

human-generated transcripts of sound files

– In an image task, expected outputs could

tags such as "dog", "cat", and so on

■ A way to measure whether the algorithm is doing a good

job
– This is necessary in order to determine the distance between the

algorithm’s current output and its expected output.

– The measurement is used as a feedback signal to adjust the way the

algorithm works. This adjustment step is what we call learning.

4

ANATOMY OF A NEURAL NETWORK

■ The input data and corresponding targets

■ Layers, which are combined into a network (or model)

■ The loss function, which defines the feedback signal

used for learning

■ The optimizer, which determines how learning proceeds

5

LENET-5: A PIONEERING 7-LEVEL CNN

■ The first successful practical application of neural nets

came in 1989 from Bell Labs, when Yann LeCun

combined the earlier ideas of convolutional neural

networks and backpropagation, and applied them to the

problem of classifying handwritten digits.

■ The resulting network, dubbed LeNet, was used by the

USPS in the 1990s to automate the reading of ZIP

codes on mail envelopes.

■ LeNet-5 was applied by several

banks to recognize hand-written

numbers on checks digitized

in 32x32 pixel images.

6

WHY 30+ YEARS GAP?

■ In 2011, Dan Ciresan from IDSIA (Switzerland) began to

win academic image-classification competitions with

GPU-trained deep neural networks

■ in 2012, a team led by Alex Krizhevsky and advised by

Geoffrey Hinton was able to achieve a top-five accuracy

of 83.6%--a significant breakthrough (in 2011 it was only

74.3%).

■ Three forces are driving advances in ML:

– Hardware

– Datasets and benchmarks

– Algorithmic advances

7

VGG16 – CNN FOR

CLASSIFICATION AND DETECTION

8

■ VGG16 is a convolutional neural network model proposed by K.

Simonyan and A. Zisserman from the University of Oxford

■ The model achieves 92.7% top-5 test accuracy in ImageNet. It was one

of the famous model submitted to ILSVRC-2014.

■ It makes the improvement over AlexNet by replacing large kernel-sized

filters (11 and 5 in the first and second convolutional layer, respectively)

with multiple 3×3 kernel-sized filters one after another.

■ VGG16 was trained for weeks using NVIDIA Titan Black GPU’s.

IS DEEP LEARNING REALLY A BLACK BOX?

■ Deep Learning Image Classification
– AiCSD Image Classification Demo.

9

https://intel.github.io/AiCSD/pipelines/bentoml/image-classification-demo.html?utm_source=chatgpt.com

A NEURAL NETWORK –

PARAMETERS- ACTIVATION FUNCTION

10

?

Activation functions

LINEAR MODEL – BEST LINEAR UNBIASED EST.

11

In R:
➢ lm.fit <- lm(Y~X)

➢ Y.hat <- lm.fit$fitted

➢ e.hat <- lm.fit$resid
Ƹ𝑒 =

Ƹ𝑒1
Ƹ𝑒2
⋮
Ƹ𝑒𝑛

∶= 𝑌 − 𝑌

REDIDUAL (SUR)REALISM –

REVERSE INVERSE PROBLEM

12

• The end user provides Ƹ𝑒 =

Ƹ𝑒1
Ƹ𝑒2
⋮
Ƹ𝑒𝑛

and 𝑌 =

𝑌1
𝑌2
⋮
𝑌𝑛

• Redidual (Sur)Realism

provides (generates)

and

REDIDUAL (SUR)REALISM – SIMULATION

13

• Here Ƹ𝑒 and 𝑌 are vectors of length 10118

• Using “Redidual (Sur)Realism” we generate

• 𝑿 = 𝑋1 𝑋2 ⋯ 𝑋5 and 𝑌, where

𝑋𝑗’s and 𝑌 are vectors of length 10118

𝑌

Ƹ𝑒

Residual plot

➢ mu.logo <- data.frame(read.csv("mu-logo.csv"))
➢ lm.fit <- lm(Y~X1+X2+X3+X4+X5, data=mu.logo)
➢ plot(lm.fit$fitted.values, lm.fit$residuals)

For interested readers:

Regression Shiny App

Code to generate similar data

“mu-logo.csv”

https://www4.stat.ncsu.edu/~stefansk/nsf_supported/hidden_images/stat_res_plots.html
http://sctc.mscs.mu.edu:3838/sample-apps/Regression/
https://www4.stat.ncsu.edu/~stefansk/nsf_supported/hidden_images/000_R_Programs/John_Staudenmayer/residplots.R
http://www.mscs.mu.edu/~mehdi/DLFA19/mu-logo.csv

SOME DEEP LEARNING PACKAGES IN R
R

Package Description

nnet
Software for feed-forward neural networks with a single hidden layer, and for

multinomial log-linear models.

neuralnet Training of neural networks using backpropagation

h2o R scripting functionality for H2O

RSNNS Interface to the Stuttgart Neural Network Simulator (SNNS)

tensorflow Interface to TensorFlow

deepnet Deep learning toolkit in R

darch Package for Deep Architectures and Restricted Boltzmann Machines

rnn Package to implement Recurrent Neural Networks (RRNs)

FCNN4R Interface to the FCNN library that allows user-extensible ANNs

rcppDL

Implementation of basic machine learning methods with many layers (deep

learning), including dA (Denoising Autoencoder), SdA (Stacked Denoising

Autoencoder), RBM (Restricted Boltzmann machine) and DBN (Deep Belief Nets)

deepr
Package to streamline the training, fine-tuning and predicting processes for deep

learning based on darch and deepnet

MXNetR
Package that brings flexible and efficient GPU computing and state-of-art deep

learning to R

14Ref: https://www.datacamp.com/community/tutorials/keras-r-deep-learning

https://www.datacamp.com/community/tutorials/keras-r-deep-learning

REGRESSION USING NEURAL NETWORK

➢ library("neuralnet");

➢ net1 <- neuralnet(Y~X1+X2+X3+X4+X5, data=mu.logo, hidden=0, act.fct=function(x) {x})

➢ plot(net1)

➢ net2 <- neuralnet(Y~X1+X2+X3+X4+X5, data=mu.logo,

hidden=10, act.fct=function(x) {x})

➢ plot(net2)

➢ net3 <- neuralnet(Y~X1+X2+X3+X4+X5, data=mu.logo,

hidden=c(10,10),

act.fct=function(x) {x})

➢ plot(net3)

➢ errors <- c(net1$result.matrix[1],

net2$result.matrix[1],

net3$result.matrix[1])

15

LINEAR ACTIVATION FUNCTION –

■ 𝑍 = 𝑊1𝑋 + 𝑏1
■ 𝑌 = 𝑊2𝑍 + 𝑏2

■ 𝑌 = 𝑊2 𝑊1𝑋 + 𝑏1 + 𝑏2
= 𝑊2𝑊1 𝑋 +𝑊2𝑏1 + 𝑏2

16

HIDDEN LAYERS DISAPPEARS

LINEAR ACTIVATION FUNCTION –

■ 𝑍 = 𝑊1𝑋 + 𝑏1
■ 𝑌 = 𝑊2𝑍 + 𝑏2

■ 𝑌 = 𝑊2 𝑊1𝑋 + 𝑏1 + 𝑏2
= 𝑊2𝑊1 𝑋 +𝑊2𝑏1 + 𝑏2

17

HIDDEN LAYERS DISAPPEARS

LINEAR REGRESSION USING NEURAL NETWORK

➢ par(mfrow=c(2,2))

➢ plot(lm.fit$fitted.values,lm.fit$residuals)

➢ plot(net1$net.result[[1]], net1$data$Y-net1$net.result[[1]])

➢ plot(net2$net.result[[1]], net1$data$Y-net2$net.result[[1]])

➢ plot(net3$net.result[[1]], net1$data$Y-net3$net.result[[1]])

Track the estimated weights (last slide):

➢ lm.fit$coefficients

(Intercept) X1 X2 X3 X4 X5

0.9761 0.1886 0.1204 0.947 0.0123 0.9670

➢ net1$weights[[1]][[1]]

➢ net2$weights[[1]][[1]]%*%net2$weights[[1]][[2]][-1,]+

c(net2$weights[[1]][[2]][1,],rep(0,5))

➢ net3$weights[[1]][[1]]%*%net3$weights[[1]][[2]][-1,]%*%

net3$weights[[1]][[3]][-1,]+

c(net3$weights[[1]][[2]][1,]%*%

net3$weights[[1]][[3]][-1,]+

net3$weights[[1]][[3]][1,],rep(0,5))

[,1]

[1,] 0.97616933628

[2,] 0.18860735193

[3,] 0.12038303654

[4,] 0.94771369991

[5,] 0.01233217481

[6,] 0.96709890209

18

[1,] 0.97612914391

[2,] 0.18860673427

[3,] 0.12037904524

[4,] 0.94767200973

[5,] 0.01233279789

[6,] 0.96705727512

[1,] 0.97612498212

[2,] 0.18860596835

[3,] 0.12037855729

[4,] 0.94766806847

[5,] 0.01233289235

[6,] 0.96705341702

NEURAL NETWORK

➢ mulogo <- data.frame(cbind(mu.logo, matrix(rnorm(prod(dim(net1$covariate))),nc=5)))

➢ net4 <- neuralnet(Y~X1+X2+X3+X4+X5+X1.1+X2.1+X3.1+X4.1+X5.1, data=mulogo,

hidden=0,linear.output=TRUE, act.fct=function(x) {x})

➢ plot(lm.fit$fitted.values, lm.fit$residuals)

➢ plot(net4$net.result[[1]], net4$data$Y-net4$net.result[[1]])

➢ plot(net4)

Function “neuralnet” Arguments:

➢ neuralnet(formula, data, hidden = 1,

threshold = 0.01, stepmax = 1e+05, rep = 1,

startweights = NULL,

learningrate = NULL, learningrate.limit = NULL,

algorithm = "rprop+",

err.fct = "sse",

act.fct = "logistic",

exclude = NULL, constant.weights = NULL)

algorithm : The following algorithms are possible:

■ 'backprop' : backpropagation

■ 'rprop+' : the resilient backpropagation with weight backtracking

■ 'rprop-' : the resilient backpropagation without weight backtracking

■ 'sag' and 'slr' : induce the usage of the modified globally convergent algorithm (grprop)

err.fct : 'sse' and 'ce' or a differentiable function that is used for the calculation of the error

act.fct : 'logistic' and 'tanh' or a user defined differentiable activation function

19

DEEP LEARNING WITH R
TENSORFLOW – KERAS

20

https://beta.rstudioconnect.com/ml-with-tensorflow-and-r/
https://www.amazon.com/Deep-Learning-R-Francois-Chollet/dp/161729554X

COMPARISON OF DEEP LEARNING SOFTWARE

■ Source: Wikipedia 21

Software
Initial

Release

Software
license[a]

Open

source
Written in OpenMPsupport CUDA support

Automatic

differentiation[1

]

Has

pretrained

models

Recurrent nets
Convolutional

nets
RBM/DBNs

Parallel

execution

(multi node)

Actively

Developed

Wolfram
Mathematica

1988 Proprietary No

C++, Wolfram

Language, CUD

A

Yes Yes Yes Yes[64] Yes Yes Yes
Under

Development
Yes

MATLAB + Neural
Network Toolbox

Proprietary No
C, C++, Java, M

ATLAB
No Yes No Yes[18][19] Yes[18] Yes[18] No

With Parallel
Computing
Toolbox[20]

Yes

Microsoft
Cognitive

Toolkit(CNTK)
2016 MIT license[21] Yes C++ Yes[26] Yes Yes Yes[27] Yes[28] Yes[28] No[29] Yes[30] Yes

PyTorch 2016 BSD Yes
Python, C, CUD

A
Yes Yes Yes Yes Yes Yes Yes Yes

Apache MXNet 2015 Apache 2.0 Yes
Small C++core

library
Yes Yes Yes[36] Yes[37] Yes Yes Yes Yes[38] Yes

Keras 2015 MIT license Yes Python
Only if using

Theano as

backend

Yes Yes Yes[15] Yes Yes Yes Yes[16] Yes

TensorFlow 2015 Apache 2.0 Yes
C++, Python, C

UDA
No Yes Yes[46] Yes[47] Yes Yes Yes Yes Yes

Chainer 2015 BSD Yes Python No Yes Yes Yes Yes Yes No Yes Yes

Theano 2007 BSD Yes Python Yes Yes Yes[49][50]

Through
Lasagne's model

zoo[51]
Yes Yes Yes Yes[52] No

Torch 2002 BSD Yes C, Lua Yes Yes[59][60] Through Twitter'

s Autograd[61] Yes[62] Yes Yes Yes Yes[63] No

BigDL 2016 Apache 2.0 Yes Scala No Yes Yes Yes

Caffe 2013 BSD Yes C++ Yes Yes Yes Yes[4] Yes Yes No ?

Neural Designer Proprietary No C++ Yes No ? ? No No No ?

OpenNN 2003 GNU LGPL Yes C++ Yes Yes ? ? No No No ?

Intel Math Kernel
Library

Proprietary No Yes[13] No Yes No Yes[14] Yes[14] No

Deeplearning4j 2014 Apache 2.0 Yes C++, Java Yes Yes[6][7] Computational

Graph
Yes[8] Yes Yes Yes Yes[9]

Intel Data
Analytics

Acceleration
Library

2015
Apache License

2.0
Yes

C++, Python, Ja

va
Yes No Yes No Yes Yes

Dlib 2002
Boost Software

License
Yes C++ Yes Yes Yes Yes No Yes Yes Yes

Apache SINGA 2015 Apache 2.0 Yes C++ No Yes ? Yes Yes Yes Yes Yes

https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-license-1
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-license-1
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/Recurrent_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Convolutional_neural_network
https://en.wikipedia.org/wiki/Wolfram_Mathematica
https://en.wikipedia.org/wiki/Wolfram_Mathematica
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-65
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/MATLAB
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-18
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-NNT-19
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-NNT-19
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-21
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-21
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-21
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/Microsoft_Cognitive_Toolkit
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-27
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-28
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-cntk.ai-29
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-cntk.ai-29
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-30
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-31
https://en.wikipedia.org/wiki/PyTorch
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/MXNet
https://en.wikipedia.org/wiki/Apache_2.0
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-37
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-38
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-39
https://en.wikipedia.org/wiki/Keras
https://en.wikipedia.org/wiki/MIT_license
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-16
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-17
https://en.wikipedia.org/wiki/TensorFlow
https://en.wikipedia.org/wiki/Apache_2.0
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-tensorflow.org-47
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-github.com-48
https://en.wikipedia.org/wiki/Chainer
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Theano_(software)
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-52
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-52
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-52
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-53
https://en.wikipedia.org/wiki/Torch_(machine_learning)
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-63
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-64
https://en.wikipedia.org/wiki/BigDL
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Caffe_(software)
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-5
https://en.wikipedia.org/wiki/Neural_Designer
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/OpenNN
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Math_Kernel_Library
https://en.wikipedia.org/wiki/Math_Kernel_Library
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-14
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-intel-benchmark-15
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-intel-benchmark-15
https://en.wikipedia.org/wiki/Deeplearning4j
https://en.wikipedia.org/wiki/Apache_2.0
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-9
https://en.wikipedia.org/wiki/Comparison_of_deep-learning_software#cite_note-10
https://en.wikipedia.org/wiki/Data_Analytics_Acceleration_Library
https://en.wikipedia.org/wiki/Data_Analytics_Acceleration_Library
https://en.wikipedia.org/wiki/Data_Analytics_Acceleration_Library
https://en.wikipedia.org/wiki/Data_Analytics_Acceleration_Library
https://en.wikipedia.org/wiki/Apache_License_2.0
https://en.wikipedia.org/wiki/Apache_License_2.0
https://en.wikipedia.org/wiki/Dlib
https://en.wikipedia.org/wiki/Boost_Software_License
https://en.wikipedia.org/wiki/Boost_Software_License
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Apache_SINGA
https://en.wikipedia.org/wiki/Apache_2.0
https://en.wikipedia.org/wiki/C++

WHY TENSORFLOW IN R?

■ Hardware independent

– CPU (via Eigen and BLAS)

– GPU (via CUDA and cuDNN)

– TPU (Tensor Processing Unit)

■ Supports automatic differentiation

■ Distributed execution and large datasets

■ Very general built-in optimization algorithms (SGD,

Adam) that don't require that all data is in RAM

■ TensorFlow models can be deployed with a low-

latency C++ runtime

■ R has a lot to offer as an interface language for

TensorFlow

22

WHAT IS TENSOR "FLOW"?

■ You define the graph in R

■ Graph is compiled and optimized

■ Graph is executed on devices

■ Nodes represent computations

■ Data (tensors) flows between them

23

REAL-WORLD EXAMPLES OF DATA TENSORS

■ 2D tensors
– Vector data—(samples, features)

■ 3D tensors
– Grayscale Images—(samples, height, width)

– Time-series data or sequence data—(samples, timesteps, features)

■ 4D tensors
– Color Images—(samples, height, width, channels)

■ 5D tensors
– Video—(samples, frames, height, width, channels)

24

WHY KERAS?

■ It allows the same code to run seamlessly on CPU or

GPU.

■ It has a user-friendly API that makes it easy to quickly

prototype deep-learning models.

25

INSTALLING KERAS

■ First, install the keras R package:
– remotes::install_github("rstudio/keras3") OR

– Install.packages("keras3")

■ To install both the core Keras library as well as the

TensorFlow backend
– library(keras3)

– keras3::install_keras(backend = "tensorflow")

■ You need Python installed before installing TensorFlow
– Anaconda (Python distribution), a free and open-source software

■ You can install TensorFlow with GPU support
– required NVIDIA® drivers,

– CUDA Toolkit v9.0, and

– cuDNN v7.0

are needed: https://tensorflow.rstudio.com/tools/local_gpu.html

26

https://keras.rstudio.com/
https://www.tensorflow.org/
https://www.anaconda.com/
https://tensorflow.rstudio.com/tools/local_gpu.html

INSTALLING KERAS (MAC AND LINUX) CONT…

27

INSTALLING KERAS (WINDOWS) CONT…

28

DEVELOPING A DEEP NN WITH KERAS

■ Step 1 - Define your training data:

– input tensors and target tensors.

■ Step 2 - Define a network of layers (or model)

– that maps your inputs to your targets.

■ Step 3 - Configure the learning process by choosing

– a loss function,

– an optimizer,

– and some metrics to monitor.

■ Step 4 - Iterate on your training data by calling the

– fit() method of your model.

29

KERAS: STEP 1 – DATA PREPROCESSING

➢ library(keras)

➢ # Load MNIST (Modified National Institute of Standards and Technology) images datasets
c(c(x_train, y_train), c(x_test, y_test)) %<-% dataset_mnist()

➢ # Flatten images and transform RGB values into [0,1] range

➢ x_train <- array_reshape(x_train, c(nrow(x_train), 784))

➢ x_test <- array_reshape(x_test, c(nrow(x_test), 784))

➢ x_train <- x_train / 255

➢ x_test <- x_test / 255

➢ # Convert class vectors to binary class matrices

➢ y_train <- to_categorical(y_train, 10)

➢ y_test <- to_categorical(y_test, 10)

30

KERAS: STEP 2 – MODEL DEFINITION

➢ model <- keras_model_sequential(input_shape = c(784))

➢ model %>%

layer_dense(units = 256, activation = 'relu') %>%

layer_dropout(rate = 0.4) %>%

layer_dense(units = 128, activation = 'relu') %>%

layer_dropout(rate = 0.3) %>%

layer_dense(units = 10, activation = 'softmax')

■ Number of parameters in the model:
❑ (784+1)*256 + (256+1)*128 + (128+1)*10 =

❑ 200,960 + 32,896 + 1,290 = 235,146

31

MULTI-CLASS VS MULTI-LABEL CLASSIFICATION

32

MULTI-CLASS VS MULTI-LABEL CLASSIFICATION

CONT…

33

MULTI-CLASS VS MULTI-LABEL CLASSIFICATION

CONT…

34

KERAS: STEP 3 – COMPILE MODEL

■ Model compilation prepares the model for training by:
1. Converting the layers into a TensorFlow graph

2. Applying the specified loss function and optimizer

3. Arranging for the collection of metrics during training

➢ model %>% compile(

➢ loss = 'categorical_crossentropy',

➢ optimizer = optimizer_rmsprop(),

➢ metrics = c('accuracy')

➢)

35

https://tensorflow.rstudio.com/keras/reference/#section-losses
https://tensorflow.rstudio.com/keras/reference/#section-optimizers
https://tensorflow.rstudio.com/keras/reference/#section-metrics

KERAS: STEP 4 – MODEL TRAINING

■ Use the fit() function to train the model for 10 epochs using

batches of 128 images:

➢ history <- model %>% fit(

➢ x_train, y_train,

➢ batch_size = 128,

➢ epochs = 10,

➢ validation_split = 0.2

➢)

■ Feed 128 samples at a time to the model (batch_size = 128)

■ Traverse the input dataset 10 times (epochs = 10)

■ Hold out 20% of the data for validation (validation_split = 0.2)

36

KERAS: EVALUATION AND PREDICTION

➢ plot(history)

➢ model %>% predict(x_test[1:100,]) %>%

apply(1, which.max)-1

[1] 7 2 1 0 4 1 4 9 6 9 0 6 9 0 1 5 9 7

[19] 3 4 9 6 6 5 4 0 7 4 0 1 3 1 3 4 7 2

[37] 7 1 2 1 1 7 4 2 3 5 1 2 4 4 6 3 5 5

[55] 6 0 4 1 9 5 7 8 9 3 7 4 6 4 3 0 7 0

[73] 2 9 1 7 3 2 9 7 7 6 2 7 8 4 7 3 6 1

[91] 3 6 9 3 1 4 1 7 6 9

➢ round(model %>% predict(x_test[1:9,]),5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 0 0 0.00000 0 0.00000 0.00000 1 0 0.00000

[2,] 0 0 1 0.00000 0 0.00000 0.00000 0 0 0.00000

[3,] 0 1 0 0.00000 0 0.00000 0.00000 0 0 0.00000

[4,] 1 0 0 0.00000 0 0.00000 0.00000 0 0 0.00000

[5,] 0 0 0 0.00000 1 0.00000 0.00000 0 0 0.00000

[6,] 0 1 0 0.00000 0 0.00000 0.00000 0 0 0.00000

[7,] 0 0 0 0.00000 1 0.00000 0.00000 0 0 0.00000

[8,] 0 0 0 0.00002 0 0.00000 0.00000 0 0 0.99998

[9,] 0 0 0 0.00000 0 0.01416 0.98584 0 0 0.00000

37

KERAS DEMO

■ https://keras3.posit.co/articles/getting_started.html

38

https://keras3.posit.co/articles/getting_started.html
https://keras.rstudio.com/articles/tutorial_basic_classification.html

KERAS API: LAYERS

■ 90+ layers available (you can also create your own)

39

KERAS API: DENSE LAYERS

■ Classic "fully connected" neural network layers

➢ layer_dense()

➢ layer_dense(units = 64, kernel_regularizer = regularizer_l1(0.01))

➢ layer_dense(units = 64, bias_regularizer = regularizer_l2(0.01))

40

KERAS API: CONVOLUTIONAL LAYERS

■ Filters for learning local (translation invariant) patterns

in data

➢ layer_conv_2d()

41

CONVOLUTION (MATHEMATICAL DEFINITION)

42

CONVOLUTION IN ENGINEERING WORLD

43

▪ In mathematics, Convolution is an operation which does the integral of the

product of 2 functions (e.g., 2 signals), with one of the signals flipped.

0 1 2 3 3X W 1 -1 2 2 -1 1

0 1 2 3 3

2 -1 1

1 * 0 = 0

0 1 2 3 3

2 -1 1

(-1 * 0) + (1 * 1) = 1

0 1 2 3 3

2 -1 1

(0 * 2) + (-1 * 1) + (2 * 1) = 1

0 1 2 3 3

2 -1 1

3

0 1 2 3 3

2 -1 1

4

0 1 2 3 3

2 -1 1

3

CONVOLUTION

44

Output: X

0 1 2 3 3

2 -1 1

6

0 1 1 3 4 3 6

CONVOLUTIONAL NEURAL NETWORKS: WHY?

45

▪ Why do shallow fully connected neural networks not work when the input is an

image?

▪ There are two main reasons:

[100 * 140 * 3] = 42,000

(1) The input consists of 42,000 numbers, therefore many weights are

needed for each node in the hidden Layer. Saying 100 nodes in the

first layer, this corresponds to 4,200,000 weight parameters required

to define only this layer. More parameters mean that more training

data is needed to prevent overfitting. This leads to more time

required to train the model.

(2) Processing by Fully Connected Deep Feed Forward Networks

requires that the image data be transformed into a linear 1-D vector.

This results in a loss of structural information, including

correlation between pixel values in 2-D.

CONVOLUTIONAL NEURAL NETWORKS: THE LAYERS

46

Image result for convolutional neural network

Image from: http://cs231n.github.io/convolutional-networks/

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwih1Jb616baAhXj6YMKHY2qC80QjRx6BAgAEAU&url=http://cs231n.github.io/convolutional-networks/&psig=AOvVaw1Ekf8XwCwisqMRcMrU_2dq&ust=1523139757034204
http://cs231n.github.io/convolutional-networks/

image feature map

.

.

.

bank of K filters K feature maps

CONVOLUTION AS FEATURE EXTRACTION

47

CONVOLUTIONAL LAYER DEMO

http://cs231n.github.io/convolutional-networks/#conv

48

http://cs231n.github.io/convolutional-networks/#conv

CONVOLUTIONAL LAYER

49

▪ In CNN, we are working with multiple filters. Each filter looks for a specific kind of

feature/pattern/concept in the input image. For example, we want our convolution

layer to look for 6 different patterns. So, our convolution layer will have 6 number of

5x5x3 filters, each one looks for a specific pattern on the image.

Image from: https://legacy.gitbook.com/book/leonardoaraujosantos/artificial-inteligence

▪ Stacking these up to make a new image of size 28 * 28 * 6

https://legacy.gitbook.com/book/leonardoaraujosantos/artificial-inteligence

CONVOLUTIONAL LAYER

50

▪ Convolution itself is a linear kind of operation. There is a need to add at the end of

the convolution layer a non-linear layer, called ReLU activation. ReLU is the max

function(x,0) with input x matrix from a convolved image. ReLU then sets all negative

values in the matrix x to zero and all other values are kept constant.

3

32

32

Image

7

28

28

Conv + ReLU

(7 of 5 * 5 * 3 filters)

8

24

24

Conv + ReLU

(8 of 5 * 5 * ? filters)

Conv + ReLU

Image result for relu activation

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj_np_52KjaAhWq5IMKHXRgD7gQjRx6BAgAEAU&url=https://www.researchgate.net/figure/ReLU-activation-function_fig3_319235847&psig=AOvVaw3yu5W004m93cZX0xlEpBKb&ust=1523208738628585

CONVOLUTIONAL NEURAL NETWORKS: A CLOSER LOOK

51

Input image: 7 * 7

Filter size: 3 * 3

Stride: 1

Output: 5 * 5

CONVOLUTIONAL NEURAL NETWORKS: A CLOSER LOOK

52

Input image: 7 * 7

Filter size: 3 * 3

Stride: 2

Output: 3 * 3

CONVOLUTIONAL NEURAL NETWORKS: A CLOSER LOOK

53

Input image: 7 * 7

Filter size: 3 * 3

Stride: 3

CONVOLUTIONAL NEURAL NETWORKS: A CLOSER LOOK

54

Output Size = (N – F) / Stride + 1

N = 7 F = 3

Stride = 1 Output Size = (7 – 3) / 1 +1 = 5

Stride = 2 Output Size = (7 – 3) / 2 + 1 = 3

Stride = 3 Output Size = (7 – 3) / 3 +1 = 2.33

Image from: http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

CONVOLUTIONAL NEURAL NETWORKS

55

▪ We are condensing the data spatially! Too fast! What does that mean?

3

32

32

Image

7

28

28

8

24

24

▪ Solution?

Zero Padding (pad): Add zeros on the image border to let the convolution output size be

the same as the input image size.

CONVOLUTIONAL NEURAL NETWORKS

56

Input Size: 4 * 4

Filter Size: 3 * 3

Stride: 1

Padding: 0 (No Padding)

Input Size: 5 * 5

Filter Size: 3 * 3

Stride: 1

Padding: 1

Image from: https://leonardoaraujosantos.gitbooks.io/artificial-

inteligence/content/convolutional_neural_networks.html

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/convolutional_neural_networks.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/convolutional_neural_networks.html

CONVOLUTIONAL NEURAL NETWORKS

57

Convolutional Layer:

It takes a data volume of size W1 * H1 * D1

Hyper Parameters:

• Number of Filters (K)

• Filter Size (F)

• Stride (S)

• Zero Padding (P)

Common Configurations:

• K = 32, 64, 128, …

• F = 3, S = 1, P = 1

• F = 5, S = 1, P = 2

• F = 5, S = 2, P = 2

MAX POOL (POOLING)

58

It performs downsampling across the spatial dimensions (width, height). The

representation would be smaller and more manageable.

100 * 100 * 128

50 * 50 * 128

MAX POOL (POOLING): HOW IT WORKS?

59

Filter Size: 2 * 2

Stride: 2

CONVOLUTIONAL NEURAL NETWORKS

60

Max Pool Layer:

It takes a data volume of size W1 * H1 * D1

Hyper Parameters:

• Filter Size (F)

• Stride (S)

Common Configurations:

• F = 2, S = 2

• F = 3, S = 2

FULLY CONNECTED LAYER

61

▪ It computes the class scores.

▪ This layer takes an input volume (the output of the Conv + ReLU + Pooling

layer preceding it) and outputs an N dimensional vector, where N is the

number of classes that we want to choose. For example, if we want to

develop an object detection for Doors, Stairs, and Signs, then N would be 3.

▪ Each number in this N dimensional vector shows the probability of a class.

For example, if the resulting vector for is [.1 .1 .80] for [Doors, Stair, Sign],

then this represents a 10% probability that the image is a door, 10%

probability that the image is a stair, and 80% probability that the image is sign.

CNN ARCHITECTURE: REVIEW

62

▪ Input: In our scenario, it holds the raw pixel values of an image (e.g., an image of

width 32, height 32, and with three color channels R,G,B).

▪ Convolutional Layer: This layer filters (convolve) the inputs to provide very useful

information appropriate for object modeling. These convolutional layers help to

automatically extract the most valuable information for the task at hand without

human designed feature selection. This layer will result in data volume such as [32 *

32 * 16] if we used for example 16 filters.

▪ ReLU Layer: will apply a pixelwise activation function, such as the

max(0,x) thresholding at zero. This layer keeps the size of the data volume

unchanged (e.g., [32 * 32 * 16]).

▪ Pooling Layer: It does a downsampling operation across the spatial dimensions

(width, height), and will result in data volume such as [16 * 16 * 16].

▪ Fully Connected Layer: This layer computes the class scores, and it will result in

volume of size [1 * 1 * 3], where each of those 3 numbers correspond to a class

score, such as among the 3 categories (doors, stairs, signs).

KERAS DEMO (MNIST CNN)

■ https://keras3.posit.co/articles/examples/vision/mnist_convnet.html

63

https://keras3.posit.co/articles/examples/vision/mnist_convnet.html
https://keras.rstudio.com/articles/tutorial_basic_classification.html

KERAS API: RECURRENT LAYERS

■ Layers that maintain state based on previously seen data

➢ layer_simple_rnn()

➢ layer_gru()

➢ layer_lstm()

64

KERAS API: EMBEDDING LAYERS

■ Vectorization of text that reflects semantic relationships

between words

➢ model <- keras_model_sequential() %>%

➢ layer_embedding(input_dim = 10000, output_dim = 8,

➢ input_length = 20) %>%

➢ layer_flatten() %>%

➢ layer_dense(units = 1, activation = "sigmoid")

■ Learn the embeddings jointly with the main task you care

about (e.g. classification); or

■ Load pre-trained word embeddings (e.g. Word2vec, GloVe)

65

KERAS DEMO (TEXT CLASSIFICATION)

■ https://keras3.posit.co/articles/examples/nlp/text_classification_from_scratch.html

66

https://keras3.posit.co/articles/examples/nlp/text_classification_from_scratch.html
https://keras.rstudio.com/articles/tutorial_basic_classification.html

RECOMMENDED READINGS

■ Datacamp Tutorials:
– Keras: Deep Learning in R

• https://www.datacamp.com/community/tutorials/keras-r-deep-

learning

– Keras Tutorial: Deep Learning in Python

• https://www.datacamp.com/community/tutorials/deep-learning-

python

– TensorFlow Tutorial For Beginners

• https://www.datacamp.com/community/tutorials/tensorflow-

tutorial

■ Deep Learning Specializations in Coursera

■ Keras in R
– https://keras.rstudio.com/

– https://tensorflow.rstudio.com/guides/keras/basics

■ Tensorflow in R
– https://tensorflow.rstudio.com/

– https://tensorflow.rstudio.com/tutorials/

67

https://www.datacamp.com/community/tutorials/keras-r-deep-learning
https://www.datacamp.com/community/tutorials/keras-r-deep-learning
https://www.datacamp.com/community/tutorials/deep-learning-python
https://www.datacamp.com/community/tutorials/deep-learning-python
https://www.datacamp.com/community/tutorials/tensorflow-tutorial
https://www.datacamp.com/community/tutorials/tensorflow-tutorial
https://www.coursera.org/specializations/deep-learning
https://keras.rstudio.com/
https://tensorflow.rstudio.com/guides/keras/basics
https://tensorflow.rstudio.com/
https://tensorflow.rstudio.com/tutorials/

KERAS FOR R CHEATSHEET

■ https://rstudio.github.io/cheatsheets/html/keras.html

68

https://rstudio.github.io/cheatsheets/html/keras.html
https://github.com/rstudio/cheatsheets/raw/master/keras.pdf

REFERENCES

QUESTIONS?

THANK YOU!

69

https://www.amazon.com/Deep-Learning-R-Francois-Chollet/dp/161729554X
https://www.amazon.com/Deep-Learning-Adaptive-Computation-Machine/dp/0262035618/
https://beta.rstudioconnect.com/ml-with-tensorflow-and-r/

	Slide 1
	Slide 2: Deep learning: Myths and Truths
	Slide 3: Classical Programming vs Machine Learning
	Slide 4: Recipes of a Machine Learning Algorithm
	Slide 5: Anatomy of a Neural Network
	Slide 6: LeNet-5: a pioneering 7-level CNN
	Slide 7: Why 30+ Years gap?
	Slide 8: VGG16 – CNN for Classification and Detection
	Slide 9: Is Deep Learning really a Black Box?
	Slide 10: A Neural Network – Parameters- Activation Function
	Slide 11: Linear Model – Best Linear Unbiased Est.
	Slide 12: Redidual (Sur)Realism – Reverse Inverse Problem
	Slide 13: Redidual (Sur)Realism – Simulation
	Slide 14: Some Deep Learning Packages in R
	Slide 15: Regression using Neural Network
	Slide 16: Linear Activation function –
	Slide 17: Linear Activation function –
	Slide 18: Linear Regression using Neural Network
	Slide 19: Neural Network
	Slide 20: Deep Learning with R TensorFlow – Keras
	Slide 21: Comparison of deep learning software
	Slide 22: Why TensorFlow in R?
	Slide 23: What is tensor "flow"?
	Slide 24: Real-world examples of data tensors
	Slide 25: Why Keras?
	Slide 26: Installing Keras
	Slide 27: Installing Keras (Mac and LinuX) cont…
	Slide 28: Installing Keras (Windows) cont…
	Slide 29: Developing a Deep NN with Keras
	Slide 30: Keras: Step 1 – Data preprocessing
	Slide 31: Keras: Step 2 – Model definition
	Slide 32: Multi-Class vs Multi-Label Classification
	Slide 33: Multi-Class vs Multi-Label Classification Cont…
	Slide 34: Multi-Class vs Multi-Label Classification Cont…
	Slide 35: Keras: Step 3 – Compile Model
	Slide 36: Keras: Step 4 – Model Training
	Slide 37: Keras: Evaluation and prediction
	Slide 38: Keras Demo
	Slide 39: Keras API: Layers
	Slide 40: Keras API: Dense Layers
	Slide 41: Keras API: Convolutional Layers
	Slide 42: Convolution (Mathematical Definition)
	Slide 43: Convolution in Engineering world
	Slide 44: Convolution
	Slide 45: Convolutional Neural Networks: Why?
	Slide 46: Convolutional Neural Networks: The layers
	Slide 47: Convolution as feature extraction
	Slide 48: Convolutional layer demo
	Slide 49: Convolutional layer
	Slide 50: Convolutional layer
	Slide 51: Convolutional Neural Networks: A Closer look
	Slide 52: Convolutional Neural Networks: A Closer look
	Slide 53: Convolutional Neural Networks: A Closer look
	Slide 54: Convolutional Neural Networks: A Closer look
	Slide 55: Convolutional Neural Networks
	Slide 56: Convolutional Neural Networks
	Slide 57: Convolutional Neural Networks
	Slide 58: Max Pool (Pooling)
	Slide 59: Max Pool (Pooling): How it works?
	Slide 60: Convolutional Neural Networks
	Slide 61: Fully connected layer
	Slide 62: CNN Architecture: Review
	Slide 63: Keras Demo (Mnist CNN)
	Slide 64: Keras API: Recurrent Layers
	Slide 65: Keras API: Embedding Layers
	Slide 66: Keras Demo (Text Classification)
	Slide 67: Recommended Readings
	Slide 68: Keras for R cheatsheet
	Slide 69: References

