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Chapter 12: Expectation−Maximization (EM Algorithm)

• Motivation (What is the missing and complete data?)

• General Specification (What do we mean by E-step and M-step?)

• Exponential family model
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12.1 Motivation

Finding maximum likelihood estimates usually requires a numerical method, which has been motivated
from calculus, but a statistically motivated EM (Expectation-Maximization) algorithm appears naturally in
problems where

• some parts of the data are missing, and analysis of the incomplete data is somewhat complicated or
nonlinear;

• it is possible to ‘fill in’ the missing data, and analysis of the complete data is relatively simple.

Example 12.1: Consider a two-way table of yij for i = 1, 2 and j = 1, 2, 3 with one missing cell y23:

10 15 17
22 23 -

Suppose we consider a linear model
yij = µ+ αi + βj + eij

where
∑

i αi =
∑

j βj = 0, and eij ’s are an iid sample from N(0, σ2). The MLEs of µ, αi and βj are the
minimizer of the sum of square ∑

ij

(yij − µ− αi − βj)
2

subject to the constraints. The solution can be obtained from the least square estimate (X ′X)−1X ′y, where
X is the design matrix:

X =


1 1 1 0
1 −1 1 0
1 1 0 1
1 −1 0 1
1 1 −1 −1

 .

We will get µ̂ = 19, α̂1 = −5, β̂1 = −3 and β̂2 = 0.
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Had there been no missing data there is a simple closed form solution:

µ̂ = ȳ, α̂i = ȳi. − ȳ, β̂j = ȳ.j − ȳ

The question is, how can we use this result for the ’complete date’ to help us estimate the parameters from
the incomplete data?

One way to do this is first to ’fill in’ the missing data y23, by the average of the available data y, then
compute the parameter estimates according to the complete data formulae. This constitutes one cycle of an
iteration. The iteration continues by recomputing the missing data

ŷ23 = µ̂+ α̂2 + β̂3

and the parameter estimates until convergence. In this example, starting with ŷ23 = 17.4 we obtain:

Iteration µ̂ α̂1 β̂1 β̂2

1 17.400 -3.400 -1.400 1.600
2 17.933 -3.933 -1.933 1.067
3 18.289 -4.289 -2.289 0.711
10 18.958 -4.958 -2.958 0.042
15 18.995 -4.995 -2.995 0.005
21 19.000 -5.000 -3.000 0.000

Thus the algorithm arrives at the solution without inverting the matrix. □

12.2 General Specification

In Problems where EM is relevant, we will denote the available data set y as ‘incomplete data’ and x as
‘complete data’. In general y = h(x) for some array-valued function h(·); this means that y is completely
determined by x, but not vice versa. For example, if x = (x1, x2, x3) then y = (x1, x2 + 2x3) is a form of
incomplete data. The key idea is that some information is lost by going from x to y.

We need to estimate θ from the likelihood based on y, L(θ; y) = pθ(y). The dependence on y is made explicit,
so we can distinguish from L(θ;x) = pθ(x), the likelihood based on x.

The EM algorithm obtains the MLE θ̂ by the following iteration:

• Start with initial value θ0

• E-step: compute the conditional expected value

Q(θ) = Q(θ|θ0) ≡ E{logL(θ;x)|y, θ0}

• M-step: maximize Q(θ) to give an updated value θ1, the go to the E-step using the updated value, and
iterate until convergence.

Example 12.2: The famous genetic example from Rao (1973, page 369) assume that the phenotype data

y = (y1, y2, y3, y4) = (125, 18, 20, 34)

is distributed according to multinomial distribution with probabilities{
1

2
+

θ

4
,
(1− θ)

4
,
(1− θ)

4
,
θ

4

}
.
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The log-likelihood based on y is

logL(θ; y) = y1 log(2 + θ) + (y2 + y3) log(1− θ) + y4 log(θ), (1)

which does not yield a closed form estimate of θ. Now lets treat y as an incomplete data from x =
(x2, x1, x3, x4, x5) with multinomial probabilities{

1

2
,
θ

4
,
(1− θ)

4
,
(1− θ)

4
,
θ

4

}
.

Here y1 = x1 + x2. The log-likelihood based on x is

logL(θ;x) = (x2 + x5) log(θ) + (x3 + x4) log(1− θ), (2)

which readily yields

θ̂ =
x2 + x5

x2 + x3 + x4 + x5
,

here is the case where the ‘complete data’ x is simpler than y.

In this example the E-step is to find

Q(θ) = E(x2 + x5|y, θ0) log(θ) + E(x3 + x4|y, θ0) log(1− θ)

= {E(x2|y, θ0) + x5} log(θ) + (x3 + x4) log(1− θ),

so we only need to compute
x̂2 = E(x2|y, θ0).

Since x1 + x2 = y1, the conditional distribution of x2|y1 ∼ Binomial(y1 = 125, p0 = θ0/4
1/2+θ0/4 ), so

x̂2 = y1
θ0/4

1/2 + θ0/4
. (3)

The M-step yields an update

θ1 =
x̂2 + x5

x̂2 + x3 + x4 + x5
, (4)

The algorithm iterates between (3) and (4). From the last category of y we may obtain a starting value:

θ0/4 = 34/197. The first five iterates are 0.690, 0.635, 0.627, 0.627, giving the MLE θ̂ = 0.627.□

It’s easy to see that, in the EM algorithm, the objective function logL(θ; y) is approximated by Q(θ), then
by using an initial estimate θ0, we try to find θ1 as the maximizer of Q(θ).

12.3 Exponential family model

In general, there is no guarantee that a particular EM algorithm exists for a particular incomplete data,
but the algorithm is simple and theoretically illuminating, if the complete data x is in the full exponential
family:

logL(θ;x) = θ′T −A(θ)

where T ≡ T (x) is a p-vector of sufficient statistics. At the n’th iteration the E-step is to find

Q(θ|θn) = E{logL(θ;x)|y, θn}
= θ′E(T |y, θn)−A(θ),
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which reduces to finding the conditional expected value T̂ = E{T |y, θn}.

For the M-step, taking the derivative of Q(θ|θn) with respect to θ, and setting it to zero, we solve the
equation

∂

∂θ
A(θ) = T̂

to get an update θn+1.

Recall that for a full exponential family
∂

∂θ
A(θ) = E(T |θ),

so the updating equation for θ satisfies

E(T |θn+1) = E(T |y, θn), (5)

and at convergence we have the MLE θ̂ satisfying

E(T |θ̂) = E(T |y, θ̂). (6)

This means that θ = θ̂ is the value that makes T and y uncorrelated. Now assume h1(θ) ≡ E(T |y, θ)
and h2(θ) ≡ E(T |θ). The conditional density of x given y is

pθ(x|y) =
pθ(x)

pθ(y)

since y is completely determined by x. So, with obvious notations,

logL(θ;x|y) = logL(θ;x)− logL(θ; y) (7)

= θT −A(θ)− logL(θ; y),

which is also in the exponential family. Taking the derivative with respect to θ, and taking conditional
expectation, we obtain

E(T |y, θ)−A′(θ)− S(θ; y) = 0

so
h1(θ) = E(T |y, θ) = A′(θ) + S(θ; y)

and
h2(θ) ≡ E(T |θ) = A′(θ)

The slops of these functions are

h′
1(θ) = A′′(θ)− I(θ; y)

h′
2(θ) = A′′(θ),

where I(θ; y) is the Fisher information based on y. Since

var(T ) = A′′(θ) > 0

var(T |y) = A′′(θ)− I(θ; y) > 0

both h1(θ) and h1(θ) are increasing functions of θ. Furthermore I(θ; y) > 0 for θ near θ̂, so h2(θ) has a
steeper slope.
Taking the conditional expectation of (7) given y yields

E{logL(θ;x|y)|y, θ0} = Q(θ|θ0)− logL(θ; y) (8)
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Derivatives of E{logL(θ;x|y)|y, θ0} behave like the expected score and Fisher information; for example,

I(θ;x|y) ≡ −∂2E{logL(θ;x|y)|y, θ0}/∂θ2

= −E{∂2 logL(θ;x|y)/∂θ2|y, θ0}.

Defining

I(θ;x) ≡ −∂2Q(θ|θ0)/∂θ2,

we have from (8)

I(θ;x|y) = I(θ;x)− I(θ; y)

or

I(θ; y) = I(θ;x)− I(θ;x|y) (9)

This intuitively means that the information in the incomplete data y is equal to the information
in the complete data x minus the extra information in x which is not in y. This is a form of the
so-called ’missing information principle’. Near the solution θ̂ we have

E(T |θ) ≈ E(T |θ̂)− I(θ̂;x)(θ − θ̂)

E(T |y, θ) ≈ E(T |y, θ̂)− I(θ̂;x|y)(θ − θ̂)

Assuming θn → θ̂ as n → ∞, and in view of (5) and (6). we have

θn+1 − θ̂

θn − θ̂
≈ I(θ̂;x|y)

I(θ̂;x)
.

Smaller I(θ̂;x|y), meaning less missing information in y relative to x, implies, faster conver-
gence. This is a more precise expression of the previous notion that the speed of convergence is determined
by how close Q(θ|θ0) is to logL(θ; y).

12.4 General properties

One of the important properties of the EM algorithm is that its step always increases the likelihood

L(θn+1; y) ≥ L(θn; y) (10)

This makes EM a numerically stable procedure as it climbs the likelihood surface; in contrast, we
don’t have this property in Newton-Raphson algorithm. However, the likelihood-climbing property doesn’t
guarantee the convergence. Another practical advantage of the EM algorithm is that it usually
handles parameter constrains automatically. This is because each M-step produces an MLE-type
estimate.

The main disadvantage of the EM algorithm compared with the competing Newton-Raphson algorithm are

• The convergence can be very slow. As discussed above, the speed of convergence is determined
by the amount of missing information in y relative to x. There is no general technique to manipulate
the complete data x to minimize the amount of missing information.

• there are no immediate standard errors for the estimators. If there is an explicit log-likelihood
function logL(θ; y), then one can easily find the observed information I(θ̂; y) numerically, and find the

standard errors from the inverse of I(θ̂; y).
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To prove (10), recall from (8) that

E{logL(θ;x|y)|y, θ0} = Q(θ|θ0)− logL(θ; y) (11)

Let h(θ|θ0) ≡ E{logL(θ;x|y)|y, θ0}. From the information inequality (Theorem 9.5), for any two densities
f(x) ̸= g(x) we have

Eg log f(X) ≤ Eg log g(X).

Applying this to the conditional density of x|y,

h(θ|θ0) ≤ h(θ0|θ0)

and at the next iterate θ1 we have

Q(θ1|θ0)− logL(θ1; y) ≤ Q(θ0|θ0)− logL(θ0; y),

or
logL(θ1; y)− logL(θ0; y) ≥ Q(θ1|θ0)−Q(θ0|θ0) ≥ 0

The right-hand side is positive by definition of θ1 as the maximizer of Q(θ|θ0). In fact, the monotone
likelihood-climbing property is satisfies as long as we choose the next iterate that satisfies Q(θ1|θ0) −
Q(θ0|θ0) ≥ 0.

In particular, the EM algorithm can get trapped in a local maximum or saddle points. If the likelihood
surface is unimodal and Q(θ|θ0) is continuous in both θ and θ0, then the EM algorithm is convergent.

12.5 Mixture Models

Let y = (y1, · · · , yn) be an iid sample from a mixture model with density

pθ(u) =

J∑
j=1

πjpj(u|θj) (12)

where πj ’s are unknown mixing probabilities, such that
∑

j πj = 1, pj(u|θj)’s are probability models, and
θj ’s are unknown parameters. Hence θ is the collection of πj ’s and θj ’s. The log-likelihood based on the
observed data y is

logL(θ; y) =
∑
i

log

{ J∑
j=1

πjpj(u|θj)
}
.

Because of the constrains on πj ’s, a simplistic application of the Newton-Raphson algorithm is prone to
failure.

Example 12.3: The waiting time (in minutes) of N = 299 consecutive eruptions of the Old Faithful geyser
in Yellowstone National Park. The bimodal nature of the distribution, as shown in Figure 1, suggests a
mixture of two processes. We model the data as coming from a normal mixture

π1N(µ1, σ
2
1) + π2N(µ2, σ

2
2).

Here π2 = 1− π1, so θ = (π1, µ1, σ1, µ2, σ2). The log-likelihood function is

logL(θ; y) =
∑
i

log{π1ϕ(yi, µ1, σ
2
1) + (1− π1)ϕ(yi, µ2, σ

2
2)},

where ϕ(y, µ, σ2) is the density of N(µ, σ2).□
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Figure 1: The histogram of the geyser waiting time and the parametric density estimate (solid line) based
on mixture of two normals.

One interpretation of the mixture model (12) is that yi comes from one of the J populations, but we do not
know which one. Had we observed the indicator zi of where yi is coming from, each θj could be estimated
separately, and the estimation of θ would become trivial.

We define the ‘complete data’ x = (x1, · · · , xn), where xi = (yi, zi). The marginal probability of Zi is
P (Zi = j) = πj ; conditional on zi = j, assume yi has density pj(u|θj). Now let

logL(θ;x) =
∑
i

logL(θ, xi)

where the contribution of xi to the log-likelihood is

logL(θ;xi) = log pzi(yi|θzi) + log πzi

=

J∑
j=1

{I(zi = j) log pj(yi|θj) + I(zi = j) log πj}, (13)

and I(zi = j) = 1 if zi = j and zero otherwise. So, with starting value θ0, the E-step consists of finding the
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conditional probabilities

p̂ij = E{I(Zi = j)|yi, θ0}
= P (Zi = j|yi, θ0)

=
π0
j pj(yi|θ0j )
pθ0(yi)

=
π0
j pj(yi|θ0j )∑

k π
0
kpk(yi|θ0k)

.

This is the estimated probability of yi coming from population j; in clustering problems it is the quantity of
interest. It is immediate that

∑
j p̂ij = 1 for each i.

From (13) the M-step update of each θj is based on separately maximizing the weighted log-likelihood∑
i

p̂ij log pj(yi|θj).

While there is no guarantee of a closed-form update, this is a major simplification of the problem. Explicit
formulae are available, for example, for the normal model. We can also show the update formula

π1
j =

∑
i p̂ij
n

for the mixing probabilities.

Example 12.3: continued. For the Old Faithful data the weighted likelihood of the j’th parameter
θj = (µj , σj) is

−1

2

∑
i

p̂ij

{
log σ2

j +
(yi − µj)

2

σ2
j

}
,

which yields the following weighted averages as updates:

µ1
j =

∑
i p̂ijyi∑
i p̂ij

σ
2(1)
j =

∑
i p̂ij(yi − µ1

j )
2∑

i p̂ij
.

Starting with (π0
1 = 0.3, µ0

1 = 55, σ0
1 = 4, µ0

2 = 80, σ0
2 = 7) we obtain the following iterations:

Iteration π1 µ1 σ1 µ2 σ2

1 0.306 54.092 4.813 80.339 7.494
2 0.306 54.136 4.891 80.317 7.542
3 0.306 54.154 4.913 80.323 7.541
5 0.307 54.175 4.930 80.338 7.528
10 0.307 54.195 4.946 80.355 7.513
15 0.308 54.201 4.951 80.359 7.509
25 0.308 54.203 4.952 80.360 7.508

Hence we obtain (π̂1 = 0.308, µ̂1 = 54.203, σ̂1 = 4.952, µ̂2 = 80.360, σ̂2 = 7.508), giving the density estimate

p̂(u) = π̂1ϕ(yi, µ̂1, σ̂
2
1) + (1− π̂1)ϕ(yi, µ̂2, σ̂

2
2).

Figure 1 compares this parametric density with the histogram.□
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12.6 Robust estimation

As described in Section 6.9 we can perform a robust regression analysis by assuming a heavy-tailed error
distribution. The EM algorithm applied to this problem becomes as IWLS algorithm.

Suppose y1, · · · , yn are independent with locations µ1, · · · , µn and a common scale parameter, such that

µi = x′
iβ,

or we write it as a regression model
yi = x′

iβ + ei,

where the ei has a tk-distribution with unknown scale σ and degrees of freedom k. Hence the total parameter
is θ = (β, σ, k). From tk-density function, the contribution of yi to the observed-data likelihood is

logL(θ; yi) = log Γ(k/2 + 1/2)− log Γ(k/2)− 1

2
log k − 1

2
log σ2 − k + 1

2
log

{
k +

(yi − µi)
2

σ2

}
. (14)

The way to proceed with EM algorithm may not be immediately obvious here, but recall that we may write

ei = σzi/
√
wi,

where zi is N(0, 1), and wi is χ
2
k/k independent of zi. So, if we knew wi the regression problem would reduce

to a normal-based regression problem.

Defining the ’complete data’ as xi = (yi, wi), for i = 1, · · · , n, the contribution of xi to the complete data
likelihood is

L(θ;xi) = p(yi|wi)p(wi).

The conditional distribution yi|wi is normal with mean µi and variance σ2/wi; the density of wi is

p(w) =
1

2k/2Γ(k/2)
wk/2−1e−kw/2.

Hence

logL(θ;xi) = v(k) +
k − 1

2
logwi −

kwi

2
− 1

2
log σ2 − wi(yi − µi)

2

σ2
,

where v(k) is a function of involving k only.

The E-step consists of finding E(logwi|yi, θ0) and E(wi|yi, θ0). There is no closed form result for the former,
thus raising a question regarding the practically of the algorithm. Note, however, that E(logwi|yi, θ0) is
only needed for updating k, while updating β and σ2 only requires E(wi|yi, θ0).

What we can do instead is to consider the estimation of β and σ2 at each fixed k, such that we get a profile
likelihood of k from logL(θ; y) in (14). The MLE of k is then readily available from the profile likelihood.
Thus the EM algorithm can be performed at each k. The E-step reduces to finding

ŵi ≡ E(wi|yi, β0, σ2(0)).

We can show that the conditional distribution of wi|yi is is χ2
k+1/(k + d2i ), where

d2i =
(yi − µ0

i )
2

σ
2(0)
i

,

so

ŵi =
k + 1

k + d2i
.



10

For β and σ2 only, the relevant term of the E-step function is

Q = −n

2
log σ2 − 1

2σ2

∑
i

ŵi(yi − µi)
2.

This is the usual likelihood associated with weighted least squared, so the update of β is

β1 = (X ′WX)−1X ′Wy,

where the weight matrix W is diagonal matrix of ŵi, and the update of σ2 is

σ2(1) =
1

n

∑
i

ŵi(yi − µi)
2,

thus completing the M-step.

For one sample problems, where y1, · · · , yn have a common location µ, the update formula for µ is simply a
weighted average

µ1 =

∑
i ŵiyi∑
i ŵi

.

The weight ŵi is small if yi is far from µ0, so outlying observation are downweighted. This is the source of
the robustness in the estimation.


