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7.3 Point Estimation Techniques

e 'wo methods are considered: the method of moments and the
method of maximum likelihood.

e the information in a random sample X, Xo,..., X, is used to
make inferences about the unknown 6.

e T'he observed values of the random sample are denoted x1, 29, ..., 2y,.
e Further, a random sample X, Xo,...,X,, is referred to with the
boldface X the observed values in a random sample z1, xz9, ..., 2y

with the boldface x.
e The joint pdf of X, Xy, ..., X, is given by
f(x]|0) = flx1,20,...,2,|0) )
= f(21]6) x f(a|0) x -+ x flan|0) = | | f(2il6).

i=1
(7.17)
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7.2.3.1 Method of Moments Estimators

e The idea behind the method of moments is to equate population
moments about the origin to their corresponding sample moments,
where the 1 sample moment about the origin, denoted

my, 18 defined as
1 11
= — X7, 7.18
My n ; i (7.18)

and subsequently to solve for estimators of the unknown parameters.

o

e Recall that the ™ population moment about the origin of a random
variable X denoted o, was defined as F [X"].

o It follows that oo = E[X"] = >"7°, 2l P(X = x;) for discrete X
and that o = E [X"] = [72 2" f(z) dz for continuous X.

oo L
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e Specifically, given a random sample X1, Xo, ..., X, from a population
with pdf f(x|01,6o,...,0:), the method of moments estimators,
denoted 67@- for 2 = 1,...,k are found by equating the first &
population moments about the origin to their corresponding sample
moments and solving the resulting system of simultaneous equations
given in Fquation (7.19).

< | | (7.19)
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Example 7.10 Given a random sample of size n from a Bin(1, 7)
population, find the method of moments estimator of 7.

Solution: The first sample moment m is X and the first population
moment about zero for the binomial random variableisa; = E [X 1} =
1 - 7. By equating the first population moment to the first sample

moment,

o) =7 E X =my,

which implies that the method of moments estimator for 7, is m =

X. u
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Example 7.11 Given a random sample of size m from a Bin(n, )
population, find the method of moments estimator of 7.

Solution: The first sample moment mq is X and the first population
moment about zero for the binomial random variableis oy = F [X 1} —

n - w. By equating the first population moment to the first sample

moment,

a(m) =nm <X = my.

which implies that the method of moments estimator for 7, is 7 =
X

n .
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Example 7.12 Given a random sample of size n from a Pois(\)
population, find the method of moments estimator of .

Solution: The first sample moment mq is X and the first population
moment about zero for a Poisson random variable is oy = £ [X 1} =
A. By equating the first population moment to the first sample
moment,

ay(m) = AE X =my,

which implies that the method of moments estimator for X, is A =
X. .



il MARQUETTE

i UNIVERSITY
Be The Difference.

Example 7.13 Given a random sample of size n from a N(u, o)
population, find the method of moments estimators of p and 2.

Solution: The first and second sample moments m) and my are
X and %Z?_l XZ-2 respectively. The first and second population

moments about zero for a normal random variable are oy = £ [X 1} =
pand o = K [X 2} — o2+ 2. By equating the first two population
moments to the first two sample moments,

( set

(o) =p = X =my
(7.20)

n
2 2 2 set 1 E : 2
: — + — 5{. — ]
(YQ(;L a ) g ;L . i m2

\ i=1

Solving the system of equations in (7.20) yields g = X and o2 =
%Z?:l X@‘Q X = SQ% as the method of moments estimators for u
and o respectively. =
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7.3.2 Likelihood and Maximum Likelihood Estimators

When sampling from a population described by a pdf f (2|6}, knowledge
of 6 provides knowledge of the entire population. The idea behind
maximum likelihood is to select the value for 8 that makes the observed
data most likely under the assumed probability model.

When 21,29, ..., 2n

are the observed values of a random variable X from a population
with parameter @, the notation L(f|x) = f(x|0) will be used to
indicate that the distribution depends on the parameter 6, and x to
indicate the distribution is dependent on the observed values from
the sample. Once the sample values are observed, L(0|x) can still be
evaluated in a formal sense, although it no longer has a probability
interpretation (in the discrete case) as does (7.17).
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L(0]x) is the likelihood function of 6 for x and is denoted by

L(6]x) = f(x]6) = Hffﬂ?léf f(21]0) x f(22]0) x -+ x f(2n]0).

(7.22)

The key difference between (7.17) and (7.22) is that the joint pdf given
in (7.17) is a function of x for a given @ and the likelihood function
given in (7.22) is a function of 8 for given x.

The value of  that maximizes L(f|x) is called the maximum
likelihood estimate (mle} of #. Another way to think of the
mle is the mode of the likelihood function. The maximum likelihood
estimate is denoted as é(x), and the maximum likelihood estimator
(MLE), a statistic, as 8(X).
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In general, the likelihood function may
be difficult to manipulate, and it is usually more convenient to work
with the natural logarithm of L(6|x), called the log-likelihood
function, since it converts products into sums. Finding the value ¢
that maximizes the log-likelihood function (In L(6|x)) is equivalent
to finding the value of # that maximizes L(f|x) since the natural
logarithm is a monotonically increasing function. If L(0|x) is differentiable
with respect to 6. a possible mle is the solution to

d(In L(0|x))
00

= 0. (7.23)

L <- loglL <- NULL; par (mfrow=c(1l,2));
n <- 10; mus <- seq(0,10,length=100); mu <- 5; x <- rnorm(n,mean=mu) ;

Like <- function (mu, data=x) {prod(dnorm(x,mean=mu)) }
logLike <- function (mu, data=x) {sum(dnorm(x,mean=mu, 1og=TRUE)) }

max.L <- optim(l, Like, data=x, control=list(fnscale=-1))
# max.L <- optim(l, Like, data=x, control=list (fnscale=-1), method="Brent", lower=0, upper=10)

max.loglL <- optim(l, logLike, data=x, control=list (fnscale=-1))

for (i in l:length(mus)) {L[i] <- Like(mus[i], x); logL[i] <- logLike(mus[i], x)}
plot (mus, L, type="1"); abline(v=max.LS$par, col=2)

plot (mus, logL, type="1"); abline (v=max.logL$par, col=2)
10
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BAYESIAN METHODS

e In the Bayesian paradigm. information brought by
o the data x. realization of
X ~ f(al8),
o combined with prior information specified by prior distribution with
density 7(6)

e Summary in a probability distribution, 7(#|x), called the posterior dis-
tribution

e Derived from the joint distribution f(x|0)m(#), according to

o f(x]0)m(0)
) = T o) (6) a0

[Bayes Theorem]

e where
m(x) —/f(1r|{9)?r(9)d9

is the marginal density of X

11
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EXAMPLE: BINOMIAL BAYES ESTIMATOR

e For an observation X from the binomial distribution Binomial(n, p) the
(so-called) conjugate prior is the family of beta distributions Beta(a, )

e The classical Bayes estimator 0™ is the posterior mean

I'(a+b+n)

1
5?]— — o rta—1 1 . n—r+b—1 K
F(L’L 1 ;I?)F(ﬂ — o+ b) /0 pp ( p) ap

n T a+b a
- ) -
a+b+n \n a+b+n \a+b

e A Biased estimator of p

12
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e Bayes Estimators are biased
e Mean Squared Error (MSE) = Variance + Bias?
A < 2
o MSE = E(0™ — p)-
o Measures average closeness to parameter
e Small Bias | can vield large Variance |.
5 n (;1:) N a+b a
a+b—+mn \n a+b+n\a+0b

2
L n o/
Varo™ = Var (—)
a+b+n n

13
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