Example: Estimating the expected difference of two normal variables
m <-1000g <-numeric(m)for (i in1:m) { x <-rnorm(2) g[i] <-abs(x[1] - x[2])}est <-mean(g)est
[1] 1.108968
Visualizing Monte Carlo Simulations
# Histogram of the simulated differenceshist(g, main="Histogram of Differences (Monte Carlo)", col="lightblue")
Lecture 2: Monte Carlo MSE Estimation (Part 2)
Estimating the Mean Squared Error (MSE)
Monte Carlo estimation of MSE for trimmed means
n <-20m <-1000mean_trim <-numeric(m)for (i in1:m) { x <-rnorm(n) mean_trim[i] <-mean(x, trim =0.1)}mse <-mean((mean_trim -0)^2)mse
[1] 0.05229764
Visualizing MSE Simulations
# Histogram of the trimmed meanshist(mean_trim, main="Trimmed Means (Monte Carlo MSE)", col="lightgreen")
Lecture 3: Advanced Monte Carlo Techniques (Part 3)
Additional Monte Carlo Techniques
Exploring advanced Monte Carlo techniques for inference
Example: Hypothesis testing with Monte Carlo methods
# Monte Carlo test example: Hypothesis testingn <-50m <-1000test_stat <-numeric(m)for (i in1:m) { x <-rnorm(n) test_stat[i] <-mean(x)}p_value <-mean(test_stat >=1.96)p_value
[1] 0
Conclusion
Recap of Monte Carlo methods in inference, MSE estimation, and hypothesis testing
Practice: Apply these methods to other inferential problems