Skip to contents

The `mfd` class represents a set of multidimensional functional data with `basismfd` object. Functional data objects are constructed by specifying a set of basis functions and a set of coefficients defining a linear combination of these basis functions.

Constructor for `mfd` objects (same as Mfd(...) )

Usage

Mfd(argval = NULL, X, mdbs, method = "data")

Arguments

argval

A list of numeric vectors of argument values at which the `mfd` object is to be evaluated

X

A numeric matrix corresponds to basis expansion coefficients if `method="coefs"` and discrete observations if `method="data"`.

mdbs

a basismfd object

method

determine the `X` matrix type as "coefs" and "data".

See also

Active bindings

basis

an object of the class `basismfd`.

coefs

a matrix of the coefficients.

nobs

number of the observation

Methods


Method new()

Constructor for `mfd` objects (same as Mfd(...) )

Usage

mfd$new(argval = NULL, X, mdbs, method = "data")

Arguments

argval

A list of numeric vectors of argument values at which the `mfd` object is to be evaluated

X

A numeric matrix corresponds to basis expansion coefficients if `method="coefs"` and discrete observations if `method="data"`.

mdbs

a basismfd object

method

determine the `X` matrix type as "coefs" and "data".


Method eval()

Evaluation an `mfd` object in some arguments.

Usage

mfd$eval(evalarg)

Arguments

evalarg

a list of numeric vector of argument values at which the mfd is to be evaluated.

Returns

A matrix of evaluated values


Method print()

Print method for `mfd` objects

Usage

mfd$print(...)

Arguments

...

Additional arguments to be passed to `print`


Method clone()

The objects of this class are cloneable with this method.

Usage

mfd$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

require(fda)
bs1 <- create.fourier.basis(c(0,2*pi),5)
bs2 <- create.bspline.basis(c(0,1),7)
bs3 <- create.exponential.basis(c(0,2),3)

#1-D mfd :_____________________________
argval <- seq(0,2*pi,length.out=100)
nobs <- 10;
X <- outer(sin(argval),seq(0.5,1.5,length.out=nobs))
mdbs1 <- Basismfd(bs1)
mfd1 <- Mfd(X=X, mdbs = mdbs1)
inprod_mfd(mfd1,mfd1)
#>            [,1]      [,2]     [,3]     [,4]     [,5]     [,6]     [,7]     [,8]
#>  [1,] 0.7853971 0.9599298 1.134462 1.308995 1.483528 1.658060 1.832593 2.007126
#>  [2,] 0.9599298 1.1732475 1.386565 1.599883 1.813201 2.026518 2.239836 2.453154
#>  [3,] 1.1344624 1.3865652 1.638668 1.890771 2.142874 2.394976 2.647079 2.899182
#>  [4,] 1.3089951 1.5998829 1.890771 2.181659 2.472546 2.763434 3.054322 3.345210
#>  [5,] 1.4835278 1.8132007 2.142874 2.472546 2.802219 3.131892 3.461565 3.791238
#>  [6,] 1.6580605 2.0265184 2.394976 2.763434 3.131892 3.500350 3.868808 4.237266
#>  [7,] 1.8325932 2.2398361 2.647079 3.054322 3.461565 3.868808 4.276051 4.683294
#>  [8,] 2.0071259 2.4531538 2.899182 3.345210 3.791238 4.237266 4.683294 5.129322
#>  [9,] 2.1816585 2.6664716 3.151285 3.636098 4.120911 4.605724 5.090537 5.575350
#> [10,] 2.3561912 2.8797893 3.403387 3.926985 4.450583 4.974181 5.497780 6.021378
#>           [,9]    [,10]
#>  [1,] 2.181659 2.356191
#>  [2,] 2.666472 2.879789
#>  [3,] 3.151285 3.403387
#>  [4,] 3.636098 3.926985
#>  [5,] 4.120911 4.450583
#>  [6,] 4.605724 4.974181
#>  [7,] 5.090537 5.497780
#>  [8,] 5.575350 6.021378
#>  [9,] 6.060163 6.544976
#> [10,] 6.544976 7.068574
norm_mfd(mfd1)
#>  [1] 0.8862263 1.0831655 1.2801047 1.4770439 1.6739830 1.8709222 2.0678614
#>  [8] 2.2648006 2.4617398 2.6586789
mfd0 <- 2.5*mfd1
mfd1-mfd0
#> A 1-Dimensional 'mfd' object:
#> nobs: 10 
#> basis 1:
#> type: fourier
#> nbasis: 5
#> support: 0 6.283185 
mfd1[1:3]
#> A 1-Dimensional 'mfd' object:
#> nobs: 3 
#> basis 1:
#> type: fourier
#> nbasis: 5
#> support: 0 6.283185 

mfd1$eval(argval)
#>                 [,1]          [,2]          [,3]          [,4]          [,5]
#>   [1,]  9.749324e-18  6.697330e-17 -1.247353e-16  3.392640e-17 -1.465435e-16
#>   [2,]  3.171196e-02  3.875906e-02  4.580616e-02  5.285327e-02  5.990037e-02
#>   [3,]  6.329623e-02  7.736205e-02  9.142788e-02  1.054937e-01  1.195595e-01
#>   [4,]  9.462562e-02  1.156535e-01  1.366815e-01  1.577094e-01  1.787373e-01
#>   [5,]  1.255740e-01  1.534793e-01  1.813847e-01  2.092900e-01  2.371953e-01
#>   [6,]  1.560167e-01  1.906871e-01  2.253575e-01  2.600279e-01  2.946983e-01
#>   [7,]  1.858312e-01  2.271271e-01  2.684229e-01  3.097187e-01  3.510145e-01
#>   [8,]  2.148975e-01  2.626524e-01  3.104074e-01  3.581624e-01  4.059174e-01
#>   [9,]  2.430984e-01  2.971202e-01  3.511421e-01  4.051639e-01  4.591858e-01
#>  [10,]  2.703204e-01  3.303916e-01  3.904628e-01  4.505340e-01  5.106052e-01
#>  [11,]  2.964540e-01  3.623326e-01  4.282113e-01  4.940899e-01  5.599686e-01
#>  [12,]  3.213938e-01  3.928147e-01  4.642355e-01  5.356563e-01  6.070772e-01
#>  [13,]  3.450395e-01  4.217150e-01  4.983904e-01  5.750658e-01  6.517413e-01
#>  [14,]  3.672959e-01  4.489172e-01  5.305385e-01  6.121598e-01  6.937811e-01
#>  [15,]  3.880732e-01  4.743117e-01  5.605502e-01  6.467887e-01  7.330272e-01
#>  [16,]  4.072880e-01  4.977964e-01  5.883049e-01  6.788133e-01  7.693217e-01
#>  [17,]  4.248627e-01  5.192767e-01  6.136906e-01  7.081045e-01  8.025185e-01
#>  [18,]  4.407267e-01  5.386659e-01  6.366052e-01  7.345445e-01  8.324837e-01
#>  [19,]  4.548160e-01  5.558862e-01  6.569564e-01  7.580267e-01  8.590969e-01
#>  [20,]  4.670739e-01  5.708681e-01  6.746623e-01  7.784566e-01  8.822508e-01
#>  [21,]  4.774511e-01  5.835514e-01  6.896516e-01  7.957519e-01  9.018521e-01
#>  [22,]  4.859058e-01  5.938848e-01  7.018639e-01  8.098430e-01  9.178220e-01
#>  [23,]  4.924039e-01  6.018270e-01  7.112500e-01  8.206731e-01  9.300962e-01
#>  [24,]  4.969192e-01  6.073457e-01  7.177722e-01  8.281987e-01  9.386252e-01
#>  [25,]  4.994337e-01  6.104189e-01  7.214042e-01  8.323894e-01  9.433747e-01
#>  [26,]  4.999371e-01  6.110342e-01  7.221313e-01  8.332284e-01  9.443256e-01
#>  [27,]  4.984274e-01  6.091890e-01  7.199507e-01  8.307123e-01  9.414740e-01
#>  [28,]  4.949107e-01  6.048909e-01  7.148710e-01  8.248512e-01  9.348314e-01
#>  [29,]  4.894012e-01  5.981571e-01  7.069129e-01  8.156687e-01  9.244245e-01
#>  [30,]  4.819211e-01  5.890147e-01  6.961082e-01  8.032018e-01  9.102954e-01
#>  [31,]  4.725004e-01  5.775005e-01  6.825006e-01  7.875007e-01  8.925008e-01
#>  [32,]  4.611771e-01  5.636610e-01  6.661448e-01  7.686286e-01  8.711124e-01
#>  [33,]  4.479969e-01  5.475518e-01  6.471066e-01  7.466615e-01  8.462163e-01
#>  [34,]  4.330127e-01  5.292377e-01  6.254628e-01  7.216878e-01  8.179129e-01
#>  [35,]  4.162849e-01  5.087927e-01  6.013005e-01  6.938082e-01  7.863160e-01
#>  [36,]  3.978809e-01  4.862989e-01  5.747169e-01  6.631349e-01  7.515528e-01
#>  [37,]  3.778748e-01  4.618470e-01  5.458191e-01  6.297913e-01  7.137635e-01
#>  [38,]  3.563471e-01  4.355353e-01  5.147236e-01  5.939118e-01  6.731001e-01
#>  [39,]  3.333845e-01  4.074699e-01  4.815554e-01  5.556408e-01  6.297263e-01
#>  [40,]  3.090795e-01  3.777638e-01  4.464482e-01  5.151325e-01  5.838168e-01
#>  [41,]  2.835299e-01  3.465366e-01  4.095432e-01  4.725499e-01  5.355565e-01
#>  [42,]  2.568387e-01  3.139140e-01  3.709892e-01  4.280645e-01  4.851398e-01
#>  [43,]  2.291133e-01  2.800273e-01  3.309414e-01  3.818554e-01  4.327695e-01
#>  [44,]  2.004653e-01  2.450131e-01  2.895609e-01  3.341088e-01  3.786566e-01
#>  [45,]  1.710101e-01  2.090123e-01  2.470145e-01  2.850168e-01  3.230190e-01
#>  [46,]  1.408663e-01  1.721699e-01  2.034735e-01  2.347771e-01  2.660807e-01
#>  [47,]  1.101553e-01  1.346342e-01  1.591132e-01  1.835921e-01  2.080711e-01
#>  [48,]  7.900070e-02  9.655641e-02  1.141121e-01  1.316678e-01  1.492235e-01
#>  [49,]  4.752802e-02  5.808980e-02  6.865159e-02  7.921337e-02  8.977515e-02
#>  [50,]  1.586397e-02  1.938929e-02  2.291462e-02  2.643994e-02  2.996527e-02
#>  [51,] -1.586397e-02 -1.938929e-02 -2.291462e-02 -2.643994e-02 -2.996527e-02
#>  [52,] -4.752802e-02 -5.808980e-02 -6.865159e-02 -7.921337e-02 -8.977515e-02
#>  [53,] -7.900070e-02 -9.655641e-02 -1.141121e-01 -1.316678e-01 -1.492235e-01
#>  [54,] -1.101553e-01 -1.346342e-01 -1.591132e-01 -1.835921e-01 -2.080711e-01
#>  [55,] -1.408663e-01 -1.721699e-01 -2.034735e-01 -2.347771e-01 -2.660807e-01
#>  [56,] -1.710101e-01 -2.090123e-01 -2.470145e-01 -2.850168e-01 -3.230190e-01
#>  [57,] -2.004653e-01 -2.450131e-01 -2.895609e-01 -3.341088e-01 -3.786566e-01
#>  [58,] -2.291133e-01 -2.800273e-01 -3.309414e-01 -3.818554e-01 -4.327695e-01
#>  [59,] -2.568387e-01 -3.139140e-01 -3.709892e-01 -4.280645e-01 -4.851398e-01
#>  [60,] -2.835299e-01 -3.465366e-01 -4.095432e-01 -4.725499e-01 -5.355565e-01
#>  [61,] -3.090795e-01 -3.777638e-01 -4.464482e-01 -5.151325e-01 -5.838168e-01
#>  [62,] -3.333845e-01 -4.074699e-01 -4.815554e-01 -5.556408e-01 -6.297263e-01
#>  [63,] -3.563471e-01 -4.355353e-01 -5.147236e-01 -5.939118e-01 -6.731001e-01
#>  [64,] -3.778748e-01 -4.618470e-01 -5.458191e-01 -6.297913e-01 -7.137635e-01
#>  [65,] -3.978809e-01 -4.862989e-01 -5.747169e-01 -6.631349e-01 -7.515528e-01
#>  [66,] -4.162849e-01 -5.087927e-01 -6.013005e-01 -6.938082e-01 -7.863160e-01
#>  [67,] -4.330127e-01 -5.292377e-01 -6.254628e-01 -7.216878e-01 -8.179129e-01
#>  [68,] -4.479969e-01 -5.475518e-01 -6.471066e-01 -7.466615e-01 -8.462163e-01
#>  [69,] -4.611771e-01 -5.636610e-01 -6.661448e-01 -7.686286e-01 -8.711124e-01
#>  [70,] -4.725004e-01 -5.775005e-01 -6.825006e-01 -7.875007e-01 -8.925008e-01
#>  [71,] -4.819211e-01 -5.890147e-01 -6.961082e-01 -8.032018e-01 -9.102954e-01
#>  [72,] -4.894012e-01 -5.981571e-01 -7.069129e-01 -8.156687e-01 -9.244245e-01
#>  [73,] -4.949107e-01 -6.048909e-01 -7.148710e-01 -8.248512e-01 -9.348314e-01
#>  [74,] -4.984274e-01 -6.091890e-01 -7.199507e-01 -8.307123e-01 -9.414740e-01
#>  [75,] -4.999371e-01 -6.110342e-01 -7.221313e-01 -8.332284e-01 -9.443256e-01
#>  [76,] -4.994337e-01 -6.104189e-01 -7.214042e-01 -8.323894e-01 -9.433747e-01
#>  [77,] -4.969192e-01 -6.073457e-01 -7.177722e-01 -8.281987e-01 -9.386252e-01
#>  [78,] -4.924039e-01 -6.018270e-01 -7.112500e-01 -8.206731e-01 -9.300962e-01
#>  [79,] -4.859058e-01 -5.938848e-01 -7.018639e-01 -8.098430e-01 -9.178220e-01
#>  [80,] -4.774511e-01 -5.835514e-01 -6.896516e-01 -7.957519e-01 -9.018521e-01
#>  [81,] -4.670739e-01 -5.708681e-01 -6.746623e-01 -7.784566e-01 -8.822508e-01
#>  [82,] -4.548160e-01 -5.558862e-01 -6.569564e-01 -7.580267e-01 -8.590969e-01
#>  [83,] -4.407267e-01 -5.386659e-01 -6.366052e-01 -7.345445e-01 -8.324837e-01
#>  [84,] -4.248627e-01 -5.192767e-01 -6.136906e-01 -7.081045e-01 -8.025185e-01
#>  [85,] -4.072880e-01 -4.977964e-01 -5.883049e-01 -6.788133e-01 -7.693217e-01
#>  [86,] -3.880732e-01 -4.743117e-01 -5.605502e-01 -6.467887e-01 -7.330272e-01
#>  [87,] -3.672959e-01 -4.489172e-01 -5.305385e-01 -6.121598e-01 -6.937811e-01
#>  [88,] -3.450395e-01 -4.217150e-01 -4.983904e-01 -5.750658e-01 -6.517413e-01
#>  [89,] -3.213938e-01 -3.928147e-01 -4.642355e-01 -5.356563e-01 -6.070772e-01
#>  [90,] -2.964540e-01 -3.623326e-01 -4.282113e-01 -4.940899e-01 -5.599686e-01
#>  [91,] -2.703204e-01 -3.303916e-01 -3.904628e-01 -4.505340e-01 -5.106052e-01
#>  [92,] -2.430984e-01 -2.971202e-01 -3.511421e-01 -4.051639e-01 -4.591858e-01
#>  [93,] -2.148975e-01 -2.626524e-01 -3.104074e-01 -3.581624e-01 -4.059174e-01
#>  [94,] -1.858312e-01 -2.271271e-01 -2.684229e-01 -3.097187e-01 -3.510145e-01
#>  [95,] -1.560167e-01 -1.906871e-01 -2.253575e-01 -2.600279e-01 -2.946983e-01
#>  [96,] -1.255740e-01 -1.534793e-01 -1.813847e-01 -2.092900e-01 -2.371953e-01
#>  [97,] -9.462562e-02 -1.156535e-01 -1.366815e-01 -1.577094e-01 -1.787373e-01
#>  [98,] -6.329623e-02 -7.736205e-02 -9.142788e-02 -1.054937e-01 -1.195595e-01
#>  [99,] -3.171196e-02 -3.875906e-02 -4.580616e-02 -5.285327e-02 -5.990037e-02
#> [100,] -1.127154e-16 -8.270575e-17 -3.016287e-16 -1.701814e-16 -3.778657e-16
#>                 [,6]          [,7]          [,8]          [,9]         [,10]
#>   [1,] -2.818609e-17  4.072306e-17  7.461948e-18 -7.489899e-17  1.776679e-18
#>   [2,]  6.694747e-02  7.399457e-02  8.104168e-02  8.808878e-02  9.513588e-02
#>   [3,]  1.336254e-01  1.476912e-01  1.617570e-01  1.758229e-01  1.898887e-01
#>   [4,]  1.997652e-01  2.207931e-01  2.418210e-01  2.628490e-01  2.838769e-01
#>   [5,]  2.651007e-01  2.930060e-01  3.209113e-01  3.488166e-01  3.767220e-01
#>   [6,]  3.293686e-01  3.640390e-01  3.987094e-01  4.333798e-01  4.680502e-01
#>   [7,]  3.923104e-01  4.336062e-01  4.749020e-01  5.161979e-01  5.574937e-01
#>   [8,]  4.536724e-01  5.014274e-01  5.491824e-01  5.969374e-01  6.446924e-01
#>   [9,]  5.132077e-01  5.672295e-01  6.212514e-01  6.752732e-01  7.292951e-01
#>  [10,]  5.706764e-01  6.307476e-01  6.908188e-01  7.508900e-01  8.109612e-01
#>  [11,]  6.258473e-01  6.917259e-01  7.576046e-01  8.234832e-01  8.893619e-01
#>  [12,]  6.784980e-01  7.499189e-01  8.213397e-01  8.927606e-01  9.641814e-01
#>  [13,]  7.284167e-01  8.050922e-01  8.817676e-01  9.584431e-01  1.035119e+00
#>  [14,]  7.754024e-01  8.570237e-01  9.386450e-01  1.020266e+00  1.101888e+00
#>  [15,]  8.192657e-01  9.055042e-01  9.917427e-01  1.077981e+00  1.164220e+00
#>  [16,]  8.598302e-01  9.503386e-01  1.040847e+00  1.131355e+00  1.221864e+00
#>  [17,]  8.969324e-01  9.913463e-01  1.085760e+00  1.180174e+00  1.274588e+00
#>  [18,]  9.304230e-01  1.028362e+00  1.126302e+00  1.224241e+00  1.322180e+00
#>  [19,]  9.601671e-01  1.061237e+00  1.162308e+00  1.263378e+00  1.364448e+00
#>  [20,]  9.860450e-01  1.089839e+00  1.193633e+00  1.297428e+00  1.401222e+00
#>  [21,]  1.007952e+00  1.114053e+00  1.220153e+00  1.326253e+00  1.432353e+00
#>  [22,]  1.025801e+00  1.133780e+00  1.241759e+00  1.349738e+00  1.457717e+00
#>  [23,]  1.039519e+00  1.148942e+00  1.258365e+00  1.367789e+00  1.477212e+00
#>  [24,]  1.049052e+00  1.159478e+00  1.269905e+00  1.380331e+00  1.490758e+00
#>  [25,]  1.054360e+00  1.165345e+00  1.276330e+00  1.387316e+00  1.498301e+00
#>  [26,]  1.055423e+00  1.166520e+00  1.277617e+00  1.388714e+00  1.499811e+00
#>  [27,]  1.052236e+00  1.162997e+00  1.273759e+00  1.384521e+00  1.495282e+00
#>  [28,]  1.044812e+00  1.154792e+00  1.264772e+00  1.374752e+00  1.484732e+00
#>  [29,]  1.033180e+00  1.141936e+00  1.250692e+00  1.359448e+00  1.468204e+00
#>  [30,]  1.017389e+00  1.124483e+00  1.231576e+00  1.338670e+00  1.445763e+00
#>  [31,]  9.975009e-01  1.102501e+00  1.207501e+00  1.312501e+00  1.417501e+00
#>  [32,]  9.735962e-01  1.076080e+00  1.178564e+00  1.281048e+00  1.383531e+00
#>  [33,]  9.457712e-01  1.045326e+00  1.144881e+00  1.244436e+00  1.343991e+00
#>  [34,]  9.141379e-01  1.010363e+00  1.106588e+00  1.202813e+00  1.299038e+00
#>  [35,]  8.788237e-01  9.713315e-01  1.063839e+00  1.156347e+00  1.248855e+00
#>  [36,]  8.399708e-01  9.283888e-01  1.016807e+00  1.105225e+00  1.193643e+00
#>  [37,]  7.977357e-01  8.817078e-01  9.656800e-01  1.049652e+00  1.133624e+00
#>  [38,]  7.522883e-01  8.314765e-01  9.106648e-01  9.898530e-01  1.069041e+00
#>  [39,]  7.038117e-01  7.778972e-01  8.519826e-01  9.260681e-01  1.000154e+00
#>  [40,]  6.525012e-01  7.211855e-01  7.898698e-01  8.585541e-01  9.272385e-01
#>  [41,]  5.985632e-01  6.615698e-01  7.245765e-01  7.875831e-01  8.505898e-01
#>  [42,]  5.422150e-01  5.992903e-01  6.563656e-01  7.134408e-01  7.705161e-01
#>  [43,]  4.836836e-01  5.345976e-01  5.855117e-01  6.364257e-01  6.873398e-01
#>  [44,]  4.232045e-01  4.677523e-01  5.123001e-01  5.568480e-01  6.013958e-01
#>  [45,]  3.610213e-01  3.990235e-01  4.370257e-01  4.750280e-01  5.130302e-01
#>  [46,]  2.973844e-01  3.286880e-01  3.599916e-01  3.912952e-01  4.225988e-01
#>  [47,]  2.325500e-01  2.570290e-01  2.815079e-01  3.059869e-01  3.304658e-01
#>  [48,]  1.667793e-01  1.843350e-01  2.018907e-01  2.194464e-01  2.370021e-01
#>  [49,]  1.003369e-01  1.108987e-01  1.214605e-01  1.320223e-01  1.425841e-01
#>  [50,]  3.349060e-02  3.701592e-02  4.054125e-02  4.406657e-02  4.759190e-02
#>  [51,] -3.349060e-02 -3.701592e-02 -4.054125e-02 -4.406657e-02 -4.759190e-02
#>  [52,] -1.003369e-01 -1.108987e-01 -1.214605e-01 -1.320223e-01 -1.425841e-01
#>  [53,] -1.667793e-01 -1.843350e-01 -2.018907e-01 -2.194464e-01 -2.370021e-01
#>  [54,] -2.325500e-01 -2.570290e-01 -2.815079e-01 -3.059869e-01 -3.304658e-01
#>  [55,] -2.973844e-01 -3.286880e-01 -3.599916e-01 -3.912952e-01 -4.225988e-01
#>  [56,] -3.610213e-01 -3.990235e-01 -4.370257e-01 -4.750280e-01 -5.130302e-01
#>  [57,] -4.232045e-01 -4.677523e-01 -5.123001e-01 -5.568480e-01 -6.013958e-01
#>  [58,] -4.836836e-01 -5.345976e-01 -5.855117e-01 -6.364257e-01 -6.873398e-01
#>  [59,] -5.422150e-01 -5.992903e-01 -6.563656e-01 -7.134408e-01 -7.705161e-01
#>  [60,] -5.985632e-01 -6.615698e-01 -7.245765e-01 -7.875831e-01 -8.505898e-01
#>  [61,] -6.525012e-01 -7.211855e-01 -7.898698e-01 -8.585541e-01 -9.272385e-01
#>  [62,] -7.038117e-01 -7.778972e-01 -8.519826e-01 -9.260681e-01 -1.000154e+00
#>  [63,] -7.522883e-01 -8.314765e-01 -9.106648e-01 -9.898530e-01 -1.069041e+00
#>  [64,] -7.977357e-01 -8.817078e-01 -9.656800e-01 -1.049652e+00 -1.133624e+00
#>  [65,] -8.399708e-01 -9.283888e-01 -1.016807e+00 -1.105225e+00 -1.193643e+00
#>  [66,] -8.788237e-01 -9.713315e-01 -1.063839e+00 -1.156347e+00 -1.248855e+00
#>  [67,] -9.141379e-01 -1.010363e+00 -1.106588e+00 -1.202813e+00 -1.299038e+00
#>  [68,] -9.457712e-01 -1.045326e+00 -1.144881e+00 -1.244436e+00 -1.343991e+00
#>  [69,] -9.735962e-01 -1.076080e+00 -1.178564e+00 -1.281048e+00 -1.383531e+00
#>  [70,] -9.975009e-01 -1.102501e+00 -1.207501e+00 -1.312501e+00 -1.417501e+00
#>  [71,] -1.017389e+00 -1.124483e+00 -1.231576e+00 -1.338670e+00 -1.445763e+00
#>  [72,] -1.033180e+00 -1.141936e+00 -1.250692e+00 -1.359448e+00 -1.468204e+00
#>  [73,] -1.044812e+00 -1.154792e+00 -1.264772e+00 -1.374752e+00 -1.484732e+00
#>  [74,] -1.052236e+00 -1.162997e+00 -1.273759e+00 -1.384521e+00 -1.495282e+00
#>  [75,] -1.055423e+00 -1.166520e+00 -1.277617e+00 -1.388714e+00 -1.499811e+00
#>  [76,] -1.054360e+00 -1.165345e+00 -1.276330e+00 -1.387316e+00 -1.498301e+00
#>  [77,] -1.049052e+00 -1.159478e+00 -1.269905e+00 -1.380331e+00 -1.490758e+00
#>  [78,] -1.039519e+00 -1.148942e+00 -1.258365e+00 -1.367789e+00 -1.477212e+00
#>  [79,] -1.025801e+00 -1.133780e+00 -1.241759e+00 -1.349738e+00 -1.457717e+00
#>  [80,] -1.007952e+00 -1.114053e+00 -1.220153e+00 -1.326253e+00 -1.432353e+00
#>  [81,] -9.860450e-01 -1.089839e+00 -1.193633e+00 -1.297428e+00 -1.401222e+00
#>  [82,] -9.601671e-01 -1.061237e+00 -1.162308e+00 -1.263378e+00 -1.364448e+00
#>  [83,] -9.304230e-01 -1.028362e+00 -1.126302e+00 -1.224241e+00 -1.322180e+00
#>  [84,] -8.969324e-01 -9.913463e-01 -1.085760e+00 -1.180174e+00 -1.274588e+00
#>  [85,] -8.598302e-01 -9.503386e-01 -1.040847e+00 -1.131355e+00 -1.221864e+00
#>  [86,] -8.192657e-01 -9.055042e-01 -9.917427e-01 -1.077981e+00 -1.164220e+00
#>  [87,] -7.754024e-01 -8.570237e-01 -9.386450e-01 -1.020266e+00 -1.101888e+00
#>  [88,] -7.284167e-01 -8.050922e-01 -8.817676e-01 -9.584431e-01 -1.035119e+00
#>  [89,] -6.784980e-01 -7.499189e-01 -8.213397e-01 -8.927606e-01 -9.641814e-01
#>  [90,] -6.258473e-01 -6.917259e-01 -7.576046e-01 -8.234832e-01 -8.893619e-01
#>  [91,] -5.706764e-01 -6.307476e-01 -6.908188e-01 -7.508900e-01 -8.109612e-01
#>  [92,] -5.132077e-01 -5.672295e-01 -6.212514e-01 -6.752732e-01 -7.292951e-01
#>  [93,] -4.536724e-01 -5.014274e-01 -5.491824e-01 -5.969374e-01 -6.446924e-01
#>  [94,] -3.923104e-01 -4.336062e-01 -4.749020e-01 -5.161979e-01 -5.574937e-01
#>  [95,] -3.293686e-01 -3.640390e-01 -3.987094e-01 -4.333798e-01 -4.680502e-01
#>  [96,] -2.651007e-01 -2.930060e-01 -3.209113e-01 -3.488166e-01 -3.767220e-01
#>  [97,] -1.997652e-01 -2.207931e-01 -2.418210e-01 -2.628490e-01 -2.838769e-01
#>  [98,] -1.336254e-01 -1.476912e-01 -1.617570e-01 -1.758229e-01 -1.898887e-01
#>  [99,] -6.694747e-02 -7.399457e-02 -8.104168e-02 -8.808878e-02 -9.513588e-02
#> [100,] -2.867226e-16 -2.450279e-16 -3.055033e-16 -4.150787e-16 -3.656174e-16
mfd1c <- Mfd(X=mfd1$coefs, mdbs = mdbs1, method = "coefs")
all.equal(c(mfd1$basis,mfd1$coefs,mfd1$nobs),c(mfd1c$basis,mfd1c$coefs,mfd1c$nobs))
#> [1] TRUE
length(mfd1)
#> [1] 10
mean(mfd1)
#> A 1-Dimensional 'mfd' object:
#> nobs: 1 
#> basis 1:
#> type: fourier
#> nbasis: 5
#> support: 0 6.283185 
plot(mfd1)